forked from AlbertoPaz/Dan-ABSA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
base_a.py
53 lines (43 loc) · 2.07 KB
/
base_a.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# -*- coding: utf-8 -*-
# file: base_a.py
# author: albertopaz <[email protected]>
# Copyright (C) 2018. All Rights Reserved.
from layers.attention import Attention
import torch
import torch.nn as nn
import torch.nn.functional as F
from layers.squeeze_embedding import SqueezeEmbedding
class BaseA(nn.Module):
def __init__(self, embedding_matrix, opt):
super(BaseA, self).__init__()
self.opt = opt
self.embed = nn.Embedding.from_pretrained(torch.tensor(embedding_matrix, dtype=torch.float))
self.squeeze_embedding = SqueezeEmbedding(batch_first=True)
self.attention = Attention(opt.embed_dim, score_function='mlp_sum')
self.x_linear = nn.Linear(opt.embed_dim, opt.embed_dim) # W3
self.mlp = nn.Linear(opt.embed_dim, opt.embed_dim) # W4
self.dense = nn.Linear(opt.embed_dim, opt.polarities_dim) # W5
def forward(self, inputs):
# inputs
text_raw_indices, aspect_indices = inputs[0], inputs[1]
memory_len = torch.sum(text_raw_indices != 0, dim=-1)
aspect_len = torch.sum(aspect_indices != 0, dim=-1)
# aspect representation
nonzeros_aspect = torch.tensor(aspect_len, dtype=torch.float).to(self.opt.device)
aspect = self.embed(aspect_indices)
aspect = torch.sum(aspect, dim=1)
aspect = torch.div(aspect, nonzeros_aspect.view(nonzeros_aspect.size(0), 1))
x = aspect.unsqueeze(dim=1)
# memory module
memory = self.embed(text_raw_indices)
memory = self.squeeze_embedding(memory, memory_len)
# content attention module
for _ in range(self.opt.hops):
#x = self.x_linear(x)
v_ns = self.attention(memory, x) # aspect-specific sentence representation
# classifier
v_ns = v_ns.view(v_ns.size(0), -1)
v_ms = F.tanh(self.mlp(v_ns))
out = self.dense(v_ms)
out = F.softmax(out, dim=-1)
return out