-
Notifications
You must be signed in to change notification settings - Fork 78
/
main-cn.py
503 lines (418 loc) · 17.7 KB
/
main-cn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import os
import asyncio
import time
import uuid
import json
import re
import pandas as pd
import tiktoken
import logging
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import JSONResponse, StreamingResponse
from pydantic import BaseModel, Field
from typing import List, Optional, Dict, Any, Union
from contextlib import asynccontextmanager
from tavily import TavilyClient
# GraphRAG 相关导入
from graphrag.query.context_builder.entity_extraction import EntityVectorStoreKey
from graphrag.query.indexer_adapters import (
read_indexer_covariates,
read_indexer_entities,
read_indexer_relationships,
read_indexer_reports,
read_indexer_text_units,
)
from graphrag.query.input.loaders.dfs import store_entity_semantic_embeddings
from graphrag.query.llm.oai.chat_openai import ChatOpenAI
from graphrag.query.llm.oai.embedding import OpenAIEmbedding
from graphrag.query.llm.oai.typing import OpenaiApiType
from graphrag.query.question_gen.local_gen import LocalQuestionGen
from graphrag.query.structured_search.local_search.mixed_context import LocalSearchMixedContext
from graphrag.query.structured_search.local_search.search import LocalSearch
from graphrag.query.structured_search.global_search.community_context import GlobalCommunityContext
from graphrag.query.structured_search.global_search.search import GlobalSearch
from graphrag.vector_stores.lancedb import LanceDBVectorStore
# 设置日志
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# 设置常量和配置
INPUT_DIR = os.getenv('INPUT_DIR')
LANCEDB_URI = f"{INPUT_DIR}/lancedb"
COMMUNITY_REPORT_TABLE = "create_final_community_reports"
ENTITY_TABLE = "create_final_nodes"
ENTITY_EMBEDDING_TABLE = "create_final_entities"
RELATIONSHIP_TABLE = "create_final_relationships"
COVARIATE_TABLE = "create_final_covariates"
TEXT_UNIT_TABLE = "create_final_text_units"
COMMUNITY_LEVEL = 2
PORT = 8012
# 全局变量,用于存储搜索引擎和问题生成器
local_search_engine = None
global_search_engine = None
question_generator = None
# 数据模型
class Message(BaseModel):
role: str
content: str
class ChatCompletionRequest(BaseModel):
model: str
messages: List[Message]
temperature: Optional[float] = 1.0
top_p: Optional[float] = 1.0
n: Optional[int] = 1
stream: Optional[bool] = False
stop: Optional[Union[str, List[str]]] = None
max_tokens: Optional[int] = None
presence_penalty: Optional[float] = 0
frequency_penalty: Optional[float] = 0
logit_bias: Optional[Dict[str, float]] = None
user: Optional[str] = None
class ChatCompletionResponseChoice(BaseModel):
index: int
message: Message
finish_reason: Optional[str] = None
class Usage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
class ChatCompletionResponse(BaseModel):
id: str = Field(default_factory=lambda: f"chatcmpl-{uuid.uuid4().hex}")
object: str = "chat.completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseChoice]
usage: Usage
system_fingerprint: Optional[str] = None
async def setup_llm_and_embedder():
"""
设置语言模型(LLM)和嵌入模型
"""
logger.info("正在设置LLM和嵌入器")
# 获取API密钥和基础URL
api_key = os.environ.get("GRAPHRAG_API_KEY", "YOUR_API_KEY")
api_key_embedding = os.environ.get("GRAPHRAG_API_KEY_EMBEDDING", api_key)
api_base = os.environ.get("API_BASE", "https://api.openai.com/v1")
api_base_embedding = os.environ.get("API_BASE_EMBEDDING", "https://api.openai.com/v1")
# 获取模型名称
llm_model = os.environ.get("GRAPHRAG_LLM_MODEL", "gpt-3.5-turbo-0125")
embedding_model = os.environ.get("GRAPHRAG_EMBEDDING_MODEL", "text-embedding-3-small")
# 检查API密钥是否存在
if api_key == "YOUR_API_KEY":
logger.error("环境变量中未找到有效的GRAPHRAG_API_KEY")
raise ValueError("GRAPHRAG_API_KEY未正确设置")
# 初始化ChatOpenAI实例
llm = ChatOpenAI(
api_key=api_key,
api_base=api_base,
model=llm_model,
api_type=OpenaiApiType.OpenAI,
max_retries=20,
)
# 初始化token编码器
token_encoder = tiktoken.get_encoding("cl100k_base")
# 初始化文本嵌入模型
text_embedder = OpenAIEmbedding(
api_key=api_key_embedding,
api_base=api_base_embedding,
api_type=OpenaiApiType.OpenAI,
model=embedding_model,
deployment_name=embedding_model,
max_retries=20,
)
logger.info("LLM和嵌入器设置完成")
return llm, token_encoder, text_embedder
async def load_context():
"""
加载上下文数据,包括实体、关系、报告、文本单元和协变量
"""
logger.info("正在加载上下文数据")
try:
entity_df = pd.read_parquet(f"{INPUT_DIR}/{ENTITY_TABLE}.parquet")
entity_embedding_df = pd.read_parquet(f"{INPUT_DIR}/{ENTITY_EMBEDDING_TABLE}.parquet")
entities = read_indexer_entities(entity_df, entity_embedding_df, COMMUNITY_LEVEL)
description_embedding_store = LanceDBVectorStore(collection_name="entity_description_embeddings")
description_embedding_store.connect(db_uri=LANCEDB_URI)
store_entity_semantic_embeddings(entities=entities, vectorstore=description_embedding_store)
relationship_df = pd.read_parquet(f"{INPUT_DIR}/{RELATIONSHIP_TABLE}.parquet")
relationships = read_indexer_relationships(relationship_df)
report_df = pd.read_parquet(f"{INPUT_DIR}/{COMMUNITY_REPORT_TABLE}.parquet")
reports = read_indexer_reports(report_df, entity_df, COMMUNITY_LEVEL)
text_unit_df = pd.read_parquet(f"{INPUT_DIR}/{TEXT_UNIT_TABLE}.parquet")
text_units = read_indexer_text_units(text_unit_df)
covariate_df = pd.read_parquet(f"{INPUT_DIR}/{COVARIATE_TABLE}.parquet")
claims = read_indexer_covariates(covariate_df)
logger.info(f"声明记录数: {len(claims)}")
covariates = {"claims": claims}
logger.info("上下文数据加载完成")
return entities, relationships, reports, text_units, description_embedding_store, covariates
except Exception as e:
logger.error(f"加载上下文数据时出错: {str(e)}")
raise
async def setup_search_engines(llm, token_encoder, text_embedder, entities, relationships, reports, text_units,
description_embedding_store, covariates):
"""
设置本地搜索引擎和全局搜索引擎
"""
logger.info("正在设置搜索引擎")
# 设置本地搜索引擎
local_context_builder = LocalSearchMixedContext(
community_reports=reports,
text_units=text_units,
entities=entities,
relationships=relationships,
covariates=covariates,
entity_text_embeddings=description_embedding_store,
embedding_vectorstore_key=EntityVectorStoreKey.ID,
text_embedder=text_embedder,
token_encoder=token_encoder,
)
local_context_params = {
"text_unit_prop": 0.5,
"community_prop": 0.1,
"conversation_history_max_turns": 5,
"conversation_history_user_turns_only": True,
"top_k_mapped_entities": 10,
"top_k_relationships": 10,
"include_entity_rank": True,
"include_relationship_weight": True,
"include_community_rank": False,
"return_candidate_context": False,
"embedding_vectorstore_key": EntityVectorStoreKey.ID,
"max_tokens": 12_000,
}
local_llm_params = {
"max_tokens": 2_000,
"temperature": 0.0,
}
local_search_engine = LocalSearch(
llm=llm,
context_builder=local_context_builder,
token_encoder=token_encoder,
llm_params=local_llm_params,
context_builder_params=local_context_params,
response_type="multiple paragraphs",
)
# 设置全局搜索引擎
global_context_builder = GlobalCommunityContext(
community_reports=reports,
entities=entities,
token_encoder=token_encoder,
)
global_context_builder_params = {
"use_community_summary": False,
"shuffle_data": True,
"include_community_rank": True,
"min_community_rank": 0,
"community_rank_name": "rank",
"include_community_weight": True,
"community_weight_name": "occurrence weight",
"normalize_community_weight": True,
"max_tokens": 12_000,
"context_name": "Reports",
}
map_llm_params = {
"max_tokens": 1000,
"temperature": 0.0,
"response_format": {"type": "json_object"},
}
reduce_llm_params = {
"max_tokens": 2000,
"temperature": 0.0,
}
global_search_engine = GlobalSearch(
llm=llm,
context_builder=global_context_builder,
token_encoder=token_encoder,
max_data_tokens=12_000,
map_llm_params=map_llm_params,
reduce_llm_params=reduce_llm_params,
allow_general_knowledge=False,
json_mode=True,
context_builder_params=global_context_builder_params,
concurrent_coroutines=32,
response_type="multiple paragraphs",
)
logger.info("搜索引擎设置完成")
return local_search_engine, global_search_engine, local_context_builder, local_llm_params, local_context_params
def format_response(response):
"""
格式化响应,添加适当的换行和段落分隔。
"""
paragraphs = re.split(r'\n{2,}', response)
formatted_paragraphs = []
for para in paragraphs:
if '```' in para:
parts = para.split('```')
for i, part in enumerate(parts):
if i % 2 == 1: # 这是代码块
parts[i] = f"\n```\n{part.strip()}\n```\n"
para = ''.join(parts)
else:
para = para.replace('. ', '.\n')
formatted_paragraphs.append(para.strip())
return '\n\n'.join(formatted_paragraphs)
async def tavily_search(prompt: str):
"""
使用Tavily API进行搜索
"""
try:
client = TavilyClient(api_key=os.environ['TAVILY_API_KEY'])
resp = client.search(prompt, search_depth="advanced")
# 将Tavily响应转换为Markdown格式
markdown_response = "# 搜索结果\n\n"
for result in resp.get('results', []):
markdown_response += f"## [{result['title']}]({result['url']})\n\n"
markdown_response += f"{result['content']}\n\n"
return markdown_response
except Exception as e:
raise HTTPException(status_code=500, detail=f"Tavily搜索错误: {str(e)}")
@asynccontextmanager
async def lifespan(app: FastAPI):
# 启动时执行
global local_search_engine, global_search_engine, question_generator
try:
logger.info("正在初始化搜索引擎和问题生成器...")
llm, token_encoder, text_embedder = await setup_llm_and_embedder()
entities, relationships, reports, text_units, description_embedding_store, covariates = await load_context()
local_search_engine, global_search_engine, local_context_builder, local_llm_params, local_context_params = await setup_search_engines(
llm, token_encoder, text_embedder, entities, relationships, reports, text_units,
description_embedding_store, covariates
)
question_generator = LocalQuestionGen(
llm=llm,
context_builder=local_context_builder,
token_encoder=token_encoder,
llm_params=local_llm_params,
context_builder_params=local_context_params,
)
logger.info("初始化完成。")
except Exception as e:
logger.error(f"初始化过程中出错: {str(e)}")
raise
yield
# 关闭时执行
logger.info("正在关闭...")
app = FastAPI(lifespan=lifespan)
# 在 chat_completions 函数中添加以下代码
async def full_model_search(prompt: str):
"""
执行全模型搜索,包括本地检索、全局检索和 Tavily 搜索
"""
local_result = await local_search_engine.asearch(prompt)
global_result = await global_search_engine.asearch(prompt)
tavily_result = await tavily_search(prompt)
# 格式化结果
formatted_result = "# 🔥🔥🔥综合搜索结果\n\n"
formatted_result += "## 🔥🔥🔥本地检索结果\n"
formatted_result += format_response(local_result.response) + "\n\n"
formatted_result += "## 🔥🔥🔥全局检索结果\n"
formatted_result += format_response(global_result.response) + "\n\n"
formatted_result += "## 🔥🔥🔥Tavily 搜索结果\n"
formatted_result += tavily_result + "\n\n"
return formatted_result
@app.post("/v1/chat/completions")
async def chat_completions(request: ChatCompletionRequest):
if not local_search_engine or not global_search_engine:
logger.error("搜索引擎未初始化")
raise HTTPException(status_code=500, detail="搜索引擎未初始化")
try:
logger.info(f"收到聊天完成请求: {request}")
prompt = request.messages[-1].content
logger.info(f"处理提示: {prompt}")
# 根据模型选择使用不同的搜索方法
if request.model == "graphrag-global-search:latest":
result = await global_search_engine.asearch(prompt)
formatted_response = format_response(result.response)
elif request.model == "tavily-search:latest":
result = await tavily_search(prompt)
formatted_response = result
elif request.model == "full-model:latest":
formatted_response = await full_model_search(prompt)
else: # 默认使用本地搜索
result = await local_search_engine.asearch(prompt)
formatted_response = format_response(result.response)
logger.info(f"格式化的搜索结果: {formatted_response}")
# 流式响应和非流式响应的处理保持不变
if request.stream:
async def generate_stream():
chunk_id = f"chatcmpl-{uuid.uuid4().hex}"
lines = formatted_response.split('\n')
for i, line in enumerate(lines):
chunk = {
"id": chunk_id,
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": request.model,
"choices": [
{
"index": 0,
"delta": {"content": line + '\n'}, # if i > 0 else {"role": "assistant", "content": ""},
"finish_reason": None
}
]
}
yield f"data: {json.dumps(chunk)}\n\n"
await asyncio.sleep(0.05)
final_chunk = {
"id": chunk_id,
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": request.model,
"choices": [
{
"index": 0,
"delta": {},
"finish_reason": "stop"
}
]
}
yield f"data: {json.dumps(final_chunk)}\n\n"
yield "data: [DONE]\n\n"
return StreamingResponse(generate_stream(), media_type="text/event-stream")
else:
response = ChatCompletionResponse(
model=request.model,
choices=[
ChatCompletionResponseChoice(
index=0,
message=Message(role="assistant", content=formatted_response),
finish_reason="stop"
)
],
usage=Usage(
prompt_tokens=len(prompt.split()),
completion_tokens=len(formatted_response.split()),
total_tokens=len(prompt.split()) + len(formatted_response.split())
)
)
logger.info(f"发送响应: {response}")
return JSONResponse(content=response.dict())
except Exception as e:
logger.error(f"处理聊天完成时出错: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/v1/models")
async def list_models():
"""
返回可用模型列表
"""
logger.info("收到模型列表请求")
current_time = int(time.time())
models = [
{"id": "graphrag-local-search:latest", "object": "model", "created": current_time - 100000, "owned_by": "graphrag"},
{"id": "graphrag-global-search:latest", "object": "model", "created": current_time - 95000, "owned_by": "graphrag"},
# {"id": "graphrag-question-generator:latest", "object": "model", "created": current_time - 90000, "owned_by": "graphrag"},
# {"id": "gpt-3.5-turbo:latest", "object": "model", "created": current_time - 80000, "owned_by": "openai"},
# {"id": "text-embedding-3-small:latest", "object": "model", "created": current_time - 70000, "owned_by": "openai"},
{"id": "tavily-search:latest", "object": "model", "created": current_time - 85000, "owned_by": "tavily"},
{"id": "full-model:latest", "object": "model", "created": current_time - 80000, "owned_by": "combined"}
]
response = {
"object": "list",
"data": models
}
logger.info(f"发送模型列表: {response}")
return JSONResponse(content=response)
if __name__ == "__main__":
import uvicorn
logger.info(f"在端口 {PORT} 上启动服务器")
uvicorn.run(app, host="0.0.0.0", port=PORT)