-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
278 lines (241 loc) · 12.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import argparse
import os
import time
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from model import MicroMLPNet
from average_meter import AverageMeter
from metric import RecMetric
from loss import CTCLoss
from dataset import TextLineDataset
from collatefn import RecCollateFn
from label_converter import CTCLabelConverter
from logger import create_logger
if not os.path.exists('save_model'):
os.makedirs('save_model')
if not os.path.exists('log'):
os.makedirs('log')
logger = create_logger('log')
def test_model(model, device, data_loader, converter, metric, loss_func, show_str_size):
model.eval()
with torch.no_grad():
running_char_corrects, running_word_corrects, running_all_word, running_all_char = 0, 0, 0, 0
show_strs = []
since = time.time()
for batch_idx, batch_data in enumerate(data_loader):
batch_data['targets'], batch_data['targets_lengths'] = converter.encode(
batch_data['labels'])
batch_data['images'] = batch_data['images'].to(device)
batch_data['targets'] = batch_data['targets'].to(device)
batch_data['targets_lengths'] = batch_data['targets_lengths'].to(
device)
predicted = model.forward(
batch_data['images'])
loss_dict = loss_func(
predicted, batch_data['targets'], batch_data['targets_lengths'])
acc_dict = metric(predicted, batch_data['labels'])
show_strs.extend(acc_dict['show_str'])
running_char_corrects += acc_dict['char_correct']
running_word_corrects += acc_dict['word_correct']
running_all_char += torch.sum(batch_data['targets_lengths']).item()
running_all_word += len(batch_data['images'])
if (batch_idx+1) == len(data_loader):
logger.info('Eval:[step {}/{} ({:.0f}%)] Loss:{:.4f} Word Acc:{:.4f} '
'Char Acc:{:.4f} Cost time:{:5.0f}s'.format(
running_all_word,
len(data_loader.dataset),
100. * (batch_idx+1) / len(data_loader),
loss_dict['loss'].item(),
running_word_corrects / running_all_word,
running_char_corrects / running_all_char,
time.time()-since))
for s in show_strs[:show_str_size]:
logger.info(s)
model.train()
val_word_accu = running_word_corrects / \
running_all_word if running_all_word != 0 else 0.
val_char_accu = running_char_corrects / \
running_all_char if running_all_char != 0 else 0.
return val_word_accu, val_char_accu
def train_model(cfg):
device = torch.device("cuda:{}".format(cfg.gpu_index)
if torch.cuda.is_available() else "cpu")
with open(cfg.vocabulary_path, mode='r', encoding='utf-8') as fa:
lines = fa.readlines()
character = [line.strip() for line in lines]
train_loader = build_dataloader(
cfg.train_root, cfg.train_list, cfg.batch_size, cfg.workers, character, cfg.in_channels, is_train=True, aug=True)
test_loader = build_dataloader(
cfg.test_root, cfg.test_list, cfg.batch_size, cfg.workers, character, cfg.in_channels, is_train=True)
converter = build_conveter(character)
loss_func = build_loss().to(device)
loss_average = build_average_meter()
metric = build_metric(converter)
model = build_model(
cfg.in_channels, cfg.nh, cfg.depth, converter.num_of_classes).to(device)
if cfg.model_path != '':
load_model(cfg.model_path, model)
optimizer = build_optimizer(model, cfg.lr)
scheduler = build_scheduler(optimizer)
val_word_accu, val_char_accu, best_word_accu = 0., 0., 0.
for epoch in range(cfg.epochs):
model.train()
running_char_corrects, running_word_corrects, running_all_word, running_all_char = 0, 0, 0, 0
since = time.time()
for batch_idx, batch_data in enumerate(train_loader):
batch_data['targets'], batch_data['targets_lengths'] = converter.encode(
batch_data['labels'])
batch_data['images'] = batch_data['images'].to(device)
batch_data['targets'] = batch_data['targets'].to(device)
batch_data['targets_lengths'] = batch_data['targets_lengths'].to(
device)
predicted = model.forward(
batch_data['images'])
loss_dict = loss_func(
predicted, batch_data['targets'], batch_data['targets_lengths'])
optimizer.zero_grad()
loss_dict['loss'].backward()
optimizer.step()
loss_average.update(loss_dict['loss'].item())
acc_dict = metric(predicted, batch_data['labels'])
running_char_corrects += acc_dict['char_correct']
running_word_corrects += acc_dict['word_correct']
running_all_char += torch.sum(batch_data['targets_lengths']).item()
running_all_word += len(batch_data['images'])
cost_time = time.time()-since
if (batch_idx+1) % cfg.display_step_interval == 0 or (batch_idx+1) == len(train_loader):
logger.info('Train:[epoch {}/{}][step {}/{} ({:.0f}%)] lr:{:.5f} Loss:{:.4f} Word Acc:{:.4f} '
'Char Acc:{:.4f} Cost time:{:5.0f}s Estimated time:{:5.0f}s'.format(
epoch+1,
cfg.epochs,
running_all_word//len(batch_data['images']),
len(train_loader.dataset)//len(
batch_data['images']),
100. * (batch_idx+1) / len(train_loader),
scheduler.get_last_lr()[0],
loss_average.avg,
running_word_corrects / running_all_word,
running_char_corrects / running_all_char,
cost_time,
cost_time*len(train_loader) / (batch_idx+1) - cost_time))
if (batch_idx+1) % cfg.eval_step_interval == 0:
val_word_accu, val_char_accu = test_model(
model, device, test_loader, converter, metric, loss_func, cfg.show_str_size)
if val_word_accu > best_word_accu:
best_word_accu = val_word_accu
save_model(cfg.model_type, model, cfg.nh, cfg.depth, 'best',
best_word_accu, val_char_accu)
if (epoch+1) % cfg.save_epoch_interval == 0:
val_word_accu, val_char_accu = test_model(
model, device, test_loader, converter, metric, loss_func, cfg.show_str_size)
if val_word_accu > best_word_accu:
best_word_accu = val_word_accu
save_epoch = 'best'
else:
save_epoch = epoch+1
save_model(cfg.model_type, model, cfg.nh, cfg.depth, save_epoch,
val_word_accu, val_char_accu)
loss_average.reset()
scheduler.step()
def build_conveter(character):
return CTCLabelConverter(character)
def build_average_meter():
return AverageMeter()
def build_metric(converter):
return RecMetric(converter)
def build_loss(blank_idx=0, reduction='sum'):
return CTCLoss(blank_idx, reduction)
def build_optimizer(model, lr=0.0001):
# return optim.SGD(model.parameters(), lr, momentum=0.9, weight_decay=0.0001)
return optim.Adam(model.parameters(), lr, betas=(0.5, 0.999), weight_decay=0.0001)
def build_dataset(data_dir, label_file_list, character, in_channels, augmentation):
return TextLineDataset(data_dir, label_file_list, character, in_channels, augmentation)
def build_collate_fn():
return RecCollateFn(32)
def build_dataloader(data_dir, label_file_list, batch_size,
num_workers, character, in_channels, is_train=False, aug=False):
dataset = build_dataset(
data_dir, label_file_list, character, in_channels, aug)
collate_fn = build_collate_fn()
loader = DataLoader(dataset=dataset, batch_size=batch_size,
collate_fn=collate_fn, shuffle=is_train,
num_workers=num_workers)
return loader
def save_model(model_type, model, nh, depth, epoch, word_acc, char_acc):
if epoch == 'best':
save_path = './save_model/{}_nh{}_depth{}_best_rec.pth'.format(
model_type, nh, depth)
if os.path.exists(save_path):
data = torch.load(save_path)
if 'model' in data and data['wordAcc'] > word_acc:
return
else:
save_path = './save_model/{}_nh{}_depth{}_epoch{}_wordAcc{:05f}_charAcc{:05f}.pth'.format(
model_type, nh, depth, epoch, word_acc, char_acc)
torch.save({
'model': model.state_dict(),
'nh': nh,
'depth': depth,
'wordAcc': word_acc,
'charAcc': char_acc},
save_path)
logger.info('save model to:'+save_path)
def load_model(model_path, model):
data = torch.load(model_path)
if 'model' in data:
model.load_state_dict(data['model'])
logger.info('Model loaded nh {}, depth {}, wordAcc {} , charAcc {}'.format(
data['nh'], data['depth'], data['wordAcc'], data['charAcc']))
def build_scheduler(optimizer):
scheduler = optim.lr_scheduler.MultiStepLR(
optimizer, milestones=[10], gamma=0.1)
#scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, 20)
return scheduler
def build_model(in_channels, nh, depth, nclass):
model = MicroMLPNet(in_channels=in_channels, nh=nh, depth=depth, nclass=nclass, img_height=32)
return model
def main():
parser = argparse.ArgumentParser(description='MicroOCR')
parser.add_argument('--train_root', default='D:/dataset/gen/',
help='path to train dataset dir')
parser.add_argument('--test_root', default='D:/dataset/gen/',
help='path to test dataset dir')
parser.add_argument(
'--train_list', default='D:/dataset/gen/train.txt', help='path to train dataset label file')
parser.add_argument(
'--test_list', default='D:/dataset/gen/test.txt', help='path to test dataset label file')
parser.add_argument('--vocabulary_path', default='english.txt',
help='vocabulary path')
parser.add_argument('--model_path', default='',
help='model path')
parser.add_argument('--model_type', default='micromlp',
help='model type', type=str)
parser.add_argument(
'--nh', default=256, help='feature width, the more complex the picture background, the greater this value', type=int)
parser.add_argument(
'--depth', default=2, help='depth, the greater the number of samples, the greater this value', type=int)
parser.add_argument(
'--in_channels', default=3, help='in channels', type=int)
parser.add_argument('--lr', default=0.001,
help='initial learning rate', type=float)
parser.add_argument('--batch_size', default=8, type=int,
help='batch size')
parser.add_argument('--workers', default=0,
help='number of data loading workers', type=int)
parser.add_argument('--epochs', default=20,
help='number of total epochs', type=int)
parser.add_argument('--display_step_interval', default=50,
help='display step interval', type=int)
parser.add_argument('--eval_step_interval', default=500,
help='eval step interval', type=int)
parser.add_argument('--save_epoch_interval', default=1,
help='save checkpoint epoch interval', type=int)
parser.add_argument('--show_str_size', default=10,
help='show str size', type=int)
parser.add_argument('--gpu_index', default=0, type=int,
help='gpu index')
cfg = parser.parse_args()
train_model(cfg)
if __name__ == '__main__':
main()