From 62d04c19bc78c9cc8b92a4338db327fd281bb74a Mon Sep 17 00:00:00 2001 From: angelip2303 Date: Wed, 10 May 2023 11:45:46 +0200 Subject: [PATCH] getting ready for version 0.0.6 --- Cargo.toml | 1 - src/pregel.rs | 9 +-------- 2 files changed, 1 insertion(+), 9 deletions(-) diff --git a/Cargo.toml b/Cargo.toml index d74bc2f..c67bbd2 100644 --- a/Cargo.toml +++ b/Cargo.toml @@ -13,7 +13,6 @@ categories = ["algorithms", "database", "mathematics", "science"] [dependencies] polars = { version = "0.29.0", features = ["lazy"] } -ego-tree = "0.6.2" [package.metadata.docs.rs] features = [] diff --git a/src/pregel.rs b/src/pregel.rs index bc3e704..7aab1b9 100644 --- a/src/pregel.rs +++ b/src/pregel.rs @@ -822,7 +822,6 @@ impl<'a> Pregel<'a> { // execution is performed until all the nodes vote to halt, or the number of iterations is // greater than the maximum number of iterations set by the user at the initialization of // the model (see the `Pregel::new` method). We start by setting the number of iterations to 1. - println!("current_vertices: {:?}", current_vertices); let mut iteration = 1; // TODO: check that nodes are not halted. while iteration <= self.max_iterations { @@ -848,7 +847,6 @@ impl<'a> Pregel<'a> { Column::edge(Column::Dst), // dst column of the resulting DataFrame Column::dst(Column::Id), // id column of the current_vertices DataFrame ); - println!("triplets_df: {:?}", triplets_df.clone().collect()); // We create a DataFrame that contains the messages sent by the vertices. The messages // are computed by performing an aggregation on the `triplets_df` DataFrame. The aggregation // is performed on the `msg` column of the `triplets_df` DataFrame, and the aggregation @@ -878,7 +876,6 @@ impl<'a> Pregel<'a> { .select(send_messages) .groupby([Column::msg(Some(Column::Id))]) .agg([aggregate_messages().alias(Column::Pregel.as_ref())]); - println!("message_df: {:?}", message_df.clone().collect()); // We Compute the new values for the vertices. Note that we have to check for possibly // null values after performing the outer join. This is, columns where the join key does // not exist in the source DataFrame. In case we find any; for example, given a certain @@ -903,7 +900,6 @@ impl<'a> Pregel<'a> { col(Column::Id.as_ref()), v_prog().alias(self.vertex_column.as_ref()), ]); - println!("vertex_columns: {:?}", vertex_columns.clone().collect()); // We update the `current_vertices` DataFrame with the new values for the vertices. We // do so by performing an inner join between the `current_vertices` DataFrame and the // `vertex_columns` DataFrame. The join is performed on the `id` column of the @@ -985,10 +981,7 @@ mod tests { fn agg_pagerank(pagerank: Pregel) -> Result { let result = match pagerank.run() { Ok(result) => result, - Err(error) => { - println!("{}", error); - return Err(String::from("Error running the PageRank algorithm")); - } + Err(_) => return Err(String::from("Error running the PageRank algorithm")), }; let rank = match result.column("rank") { Ok(rank) => rank,