forked from tokyo/tokyo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtokyo.pyx
791 lines (589 loc) · 30.3 KB
/
tokyo.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
cimport numpy as np
import_array()
##########################################################################
# BLAS LEVEL 1
##########################################################################
# Each subroutine comes in two variants:
# [sd]name and [sd]name_
# The variant with the trailing underscore skips type and dimension checks,
# calls the low-level C-routine directly and works with C types.
# vector swap: x <-> y
cdef void sswap_(int M, float *x, int dx, float *y, int dy):
lib_sswap(M, x, dx, y, dy)
cdef void sswap(np.ndarray x, np.ndarray y):
if x.ndim != 1: raise ValueError("x is not a vector")
if y.ndim != 1: raise ValueError("y is not a vector")
if x.shape[0] != y.shape[0]: raise ValueError("x rows != y rows")
if x.descr.type_num != NPY_FLOAT:
raise ValueError("x is not of type float")
if y.descr.type_num != NPY_FLOAT:
raise ValueError("y is not of type float")
lib_sswap(x.shape[0], <float*>x.data, 1, <float*>y.data, 1)
cdef void dswap_(int M, double *x, int dx, double *y, int dy):
lib_dswap(M, x, dx, y, dy)
cdef void dswap(np.ndarray x, np.ndarray y):
if x.ndim != 1: raise ValueError("x is not a vector")
if y.ndim != 1: raise ValueError("y is not a vector")
if x.shape[0] != y.shape[0]: raise ValueError("x rows != y rows")
if x.descr.type_num != NPY_DOUBLE:
raise ValueError("x is not of type double")
if y.descr.type_num != NPY_DOUBLE:
raise ValueError("y is not of type double")
lib_dswap(x.shape[0], <double*>x.data, 1, <double*>y.data, 1)
# scalar vector multiply: x *= alpha
cdef void sscal_(int N, float alpha, float *x, int dx):
lib_sscal(N, alpha, x, dx)
cdef void sscal(float alpha, np.ndarray x):
if x.ndim != 1: raise ValueError("x is not a vector")
if x.descr.type_num != NPY_FLOAT:
raise ValueError("x is not of type float")
lib_sscal(x.shape[0], alpha, <float*>x.data, 1)
cdef void dscal_(int N, double alpha, double *x, int dx):
lib_dscal(N, alpha, x, dx)
cdef void dscal(double alpha, np.ndarray x):
if x.ndim != 1: raise ValueError("x is not a vector")
if x.descr.type_num != NPY_DOUBLE:
raise ValueError("x is not of type double")
lib_dscal(x.shape[0], alpha, <double*>x.data, 1)
# vector copy: y <- x
cdef void scopy_(int N, float *x, int dx, float *y, int dy):
lib_scopy(N, x, dx, y, dy)
cdef void scopy(np.ndarray x, np.ndarray y):
if x.ndim != 1: raise ValueError("x is not a vector")
if y.ndim != 1: raise ValueError("y is not a vector")
if x.shape[0] != y.shape[0]: raise ValueError("x rows != y rows")
if x.descr.type_num != NPY_FLOAT:
raise ValueError("x is not of type float")
if y.descr.type_num != NPY_FLOAT:
raise ValueError("y is not of type float")
lib_scopy(x.shape[0], <float*>x.data, 1, <float*>y.data, 1)
cdef void dcopy_(int N, double *x, int dx, double *y, int dy):
lib_dcopy(N, x, dx, y, dy)
cdef void dcopy(np.ndarray x, np.ndarray y):
if x.ndim != 1: raise ValueError("x is not a vector")
if y.ndim != 1: raise ValueError("y is not a vector")
if x.shape[0] != y.shape[0]: raise ValueError("x rows != y rows")
if x.descr.type_num != NPY_DOUBLE:
raise ValueError("x is not of type double")
if y.descr.type_num != NPY_DOUBLE:
raise ValueError("y is not of type double")
lib_dcopy(x.shape[0], <double*>x.data, 1, <double*>y.data, 1)
# vector addition: y += alpha*x
cdef void saxpy_(int N, float alpha, float *x, int dx, float *y, int dy):
lib_saxpy(N, alpha, x, dx, y, dy)
cdef void saxpy(float alpha, np.ndarray x, np.ndarray y):
if x.ndim != 1: raise ValueError("x is not a vector")
if y.ndim != 1: raise ValueError("y is not a vector")
if x.shape[0] != y.shape[0]: raise ValueError("x rows != y rows")
if x.descr.type_num != NPY_FLOAT:
raise ValueError("x is not of type float")
if y.descr.type_num != NPY_FLOAT:
raise ValueError("y is not of type float")
lib_saxpy(x.shape[0], alpha, <float*>x.data, 1, <float*>y.data, 1)
cdef void daxpy_(int N, double alpha, double *x, int dx, double *y, int dy):
lib_daxpy(N, alpha, x, dx, y, dy)
cdef void daxpy(double alpha, np.ndarray x, np.ndarray y):
if x.ndim != 1: raise ValueError("x is not a vector")
if y.ndim != 1: raise ValueError("y is not a vector")
if x.shape[0] != y.shape[0]: raise ValueError("x rows != y rows")
if x.descr.type_num != NPY_DOUBLE:
raise ValueError("x is not of type double")
if y.descr.type_num != NPY_DOUBLE:
raise ValueError("y is not of type double")
lib_daxpy(x.shape[0], alpha, <double*>x.data, 1, <double*>y.data, 1)
# vector dot product: x'y
cdef float sdot_(int N, float *x, int dx, float *y, int dy):
return lib_sdot(N, x, dx, y, dy)
cdef float sdot(np.ndarray x, np.ndarray y):
if x.ndim != 1: raise ValueError("x is not a vector")
if y.ndim != 1: raise ValueError("y is not a vector")
if x.shape[0] != y.shape[0]: raise ValueError("x rows != y rows")
if x.descr.type_num != NPY_FLOAT:
raise ValueError("x is not of type float")
if y.descr.type_num != NPY_FLOAT:
raise ValueError("y is not of type float")
return lib_sdot(x.shape[0], <float*>x.data, 1, <float*>y.data, 1)
cdef double ddot_(int N, double *x, int dx, double *y, int dy):
return lib_ddot(N, x, dx, y, dy)
cdef double ddot(np.ndarray x, np.ndarray y):
if x.ndim != 1: raise ValueError("x is not a vector")
if y.ndim != 1: raise ValueError("y is not a vector")
if x.shape[0] != y.shape[0]: raise ValueError("x rows != y rows")
if x.descr.type_num != NPY_DOUBLE:
raise ValueError("x is not of type double")
if y.descr.type_num != NPY_DOUBLE:
raise ValueError("y is not of type double")
return lib_ddot(x.shape[0], <double*>x.data, 1, <double*>y.data, 1)
# Euclidean norm: ||x||_2
cdef float snrm2_(int N, float *x, int dx):
return lib_snrm2(N, x, dx)
cdef float snrm2(np.ndarray x):
if x.ndim != 1: raise ValueError("x is not a vector")
if x.descr.type_num != NPY_FLOAT:
raise ValueError("x is not of type float")
return lib_snrm2(x.shape[0], <float*>x.data, 1)
cdef double dnrm2_(int N, double *x, int dx):
return lib_dnrm2(N, x, dx)
cdef double dnrm2(np.ndarray x):
if x.ndim != 1: raise ValueError("x is not a vector")
if x.descr.type_num != NPY_DOUBLE:
raise ValueError("x is not of type double")
return lib_dnrm2(x.shape[0], <double*>x.data, 1)
# sum of absolute values: ||x||_1
cdef float sasum_(int N, float *x, int dx):
return lib_sasum(N, x, dx)
cdef float sasum(np.ndarray x):
if x.ndim != 1: raise ValueError("x is not a vector")
if x.descr.type_num != NPY_FLOAT:
raise ValueError("x is not of type float")
return lib_sasum(x.shape[0], <float*>x.data, 1)
cdef double dasum_(int N, double *x, int dx):
return lib_dasum(N, x, dx)
cdef double dasum(np.ndarray x):
if x.ndim != 1: raise ValueError("x is not a vector")
if x.descr.type_num != NPY_DOUBLE:
raise ValueError("x is not of type double")
return lib_dasum(x.shape[0], <double*>x.data, 1)
# index of maximum absolute value element
cdef int isamax_(int N, float *x, int dx):
return lib_isamax(N, x, dx)
cdef int isamax(np.ndarray x):
if x.descr.type_num != NPY_FLOAT:
raise ValueError("x is not of type float")
return lib_isamax(x.shape[0], <float*>x.data, 1)
cdef int idamax_(int N, double *x, int dx):
return lib_idamax(N, x, dx)
cdef int idamax(np.ndarray x):
if x.ndim != 1: raise ValueError("x is not a vector")
if x.descr.type_num != NPY_DOUBLE:
raise ValueError("x is not of type double")
return lib_idamax(x.shape[0], <double*>x.data, 1)
# Generate a Givens plane rotation: [a,b,c,s] <- rotg(a,b).
cdef np.ndarray srotg_(float a, float b):
cdef np.ndarray x = svnewempty(4)
cdef float aa = a, bb = b, c = 0.0, s = 0.0
lib_srotg(&aa, &bb, &c, &s)
x[0] = aa ; x[1] = bb ; x[2] = c ; x[3] = s
return x
cdef np.ndarray srotg(float a, float b):
return srotg_(a, b)
cdef np.ndarray drotg_(double a, double b):
cdef np.ndarray x = dvnewempty(4)
cdef double aa = a, bb = b, c = 0.0, s = 0.0
lib_drotg(&aa, &bb, &c, &s)
x[0] = aa ; x[1] = bb ; x[2] = c ; x[3] = s
return x
cdef np.ndarray drotg(double a, double b):
return drotg_(a, b)
# Generate a modified Givens plane rotation.
cdef void srotmg_(float *d1, float *d2, float *x, float y, float *param):
lib_srotmg(d1, d2, x, y, param)
cdef tuple srotmg(float d1, float d2, float x, float y, np.ndarray param):
if param.ndim != 1: raise ValueError("param is not a vector")
if param.shape[0] < 5:
raise ValueError("param must have length at least 5")
if param.descr.type_num != NPY_FLOAT:
raise ValueError("param is not of type float")
cdef float d1_ = d1, d2_ = d2, x_ = x
srotmg_(&d1_, &d2_, &x_, y, <float *>param.data)
return (d1_, d2_, x_, param)
cdef void drotmg_(double *d1, double *d2, double *x, double y, double *param):
lib_drotmg(d1, d2, x, y, param)
cdef tuple drotmg(double d1, double d2, double x, double y, np.ndarray param):
if param.ndim != 1: raise ValueError("param is not a vector")
if param.shape[0] < 5:
raise ValueError("param must have length at least 5")
if param.descr.type_num != NPY_DOUBLE:
raise ValueError("param is not of type double")
cdef double d1_ = d1, d2_ = d2, x_ = x
drotmg_(&d1_, &d2_, &x_, y, <double *>param.data)
return (d1, d2, x, param)
# Apply a Givens plane rotation.
cdef void srot_(int N, float *x, int dx, float *y, int dy, float c, float s):
lib_srot(N, x, dx, y, dy, c, s)
cdef void srot(np.ndarray x, np.ndarray y, float c, float s, int dx=1, int dy=1):
if x.ndim != 1: raise ValueError("x is not a vector")
if y.ndim != 1: raise ValueError("y is not a vector")
if x.shape[0] != y.shape[0]: raise ValueError("x rows != y rows")
if x.descr.type_num != NPY_FLOAT:
raise ValueError("x is not of type float")
if y.descr.type_num != NPY_FLOAT:
raise ValueError("y is not of type float")
srot_(x.shape[0], <float *>x.data, dx, <float *>y.data, dy, c, s)
return
cdef void drot_(int N, double *x, int dx, double *y, int dy, double c, double s):
lib_drot(N, x, dx, y, dy, c, s)
cdef void drot(np.ndarray x, np.ndarray y, double c, double s):
if x.ndim != 1: raise ValueError("x is not a vector")
if y.ndim != 1: raise ValueError("y is not a vector")
if x.shape[0] != y.shape[0]: raise ValueError("x rows != y rows")
if x.descr.type_num != NPY_DOUBLE:
raise ValueError("x is not of type double")
if y.descr.type_num != NPY_DOUBLE:
raise ValueError("y is not of type double")
drot_(x.shape[0], <double *>x.data, 1, <double *>y.data, 1, c, s)
return
# Apply a modified Givens plane rotation.
cdef void srotm_(int N, float *x, int dx, float *y, int dy, float *param):
lib_srotm(N, x, dx, y, dy, param)
cdef void srotm(np.ndarray x, np.ndarray y, np.ndarray param):
if x.ndim != 1: raise ValueError("x is not a vector")
if y.ndim != 1: raise ValueError("y is not a vector")
if param.ndim != 1: raise ValueError("param is not a vector")
if x.shape[0] != y.shape[0]: raise ValueError("x rows != y rows")
if param.shape[0] < 5:
raise ValueError("param must have length at least 5")
if param.descr.type_num != NPY_FLOAT:
raise ValueError("param is not of type float")
if x.descr.type_num != NPY_FLOAT:
raise ValueError("x is not of type float")
if y.descr.type_num != NPY_FLOAT:
raise ValueError("y is not of type float")
srotm_(x.shape[0], <float *>x.data, 1,
<float *>y.data, 1, <float *>param.data)
return
cdef void drotm_(int N, double *x, int dx, double *y, int dy, double *param):
lib_drotm(N, x, dx, y, dy, param)
cdef void drotm(np.ndarray x, np.ndarray y, np.ndarray param):
if x.ndim != 1: raise ValueError("x is not a vector")
if y.ndim != 1: raise ValueError("y is not a vector")
if x.shape[0] != y.shape[0]: raise ValueError("x rows != y rows")
if param.shape[0] < 5:
raise ValueError("param must have length at least 5")
if param.descr.type_num != NPY_DOUBLE:
raise ValueError("param is not of type double")
if x.descr.type_num != NPY_DOUBLE:
raise ValueError("x is not of type double")
if y.descr.type_num != NPY_DOUBLE:
raise ValueError("y is not of type double")
drotm_(x.shape[0], <double *>x.data, 1,
<double *>y.data, 1, <double *>param.data)
return
##########################################################################
# BLAS LEVEL 2
##########################################################################
#
# matrix times vector: A = alpha * A x + beta * y
# or A = alpha * A.T x + beta * y
#
# single precison
cdef void sgemv_(CBLAS_ORDER Order, CBLAS_TRANSPOSE TransA, int M, int N,
float alpha, float *A, int lda, float *x, int dx,
float beta, float *y, int dy):
lib_sgemv(Order, TransA, M, N, alpha, A, lda, x, dx, beta, y, dy)
cdef void sgemv6(CBLAS_TRANSPOSE TransA, float alpha, np.ndarray A,
np.ndarray x, float beta, np.ndarray y):
if A.ndim != 2: raise ValueError("A is not a matrix")
if x.ndim != 1: raise ValueError("x is not a vector")
if y.ndim != 1: raise ValueError("y is not a vector")
if A.shape[0] != y.shape[0]: raise ValueError("A rows != y rows")
if A.shape[1] != x.shape[0]: raise ValueError("A columns != x rows")
if A.descr.type_num != NPY_FLOAT: raise ValueError("A is not of type float")
if x.descr.type_num != NPY_FLOAT: raise ValueError("x is not of type float")
if y.descr.type_num != NPY_FLOAT: raise ValueError("y is not of type float")
lib_sgemv(CblasRowMajor, TransA, A.shape[0], A.shape[1], alpha, <float*>A.data,
A.shape[1], <float*>x.data, 1, beta, <float*>y.data, 1)
cdef void sgemv5(float alpha, np.ndarray A, np.ndarray x, float beta, np.ndarray y):
if A.ndim != 2: raise ValueError("A is not a matrix")
if x.ndim != 1: raise ValueError("x is not a vector")
if y.ndim != 1: raise ValueError("y is not a vector")
if A.shape[0] != y.shape[0]: raise ValueError("A rows != y rows")
if A.shape[1] != x.shape[0]: raise ValueError("A columns != x rows")
if A.descr.type_num != NPY_FLOAT: raise ValueError("A is not of type float")
if x.descr.type_num != NPY_FLOAT: raise ValueError("x is not of type float")
if y.descr.type_num != NPY_FLOAT: raise ValueError("y is not of type float")
lib_sgemv(CblasRowMajor, CblasNoTrans, A.shape[0], A.shape[1], alpha,
<float*>A.data, A.shape[1], <float*>x.data, 1, beta, <float*>y.data, 1)
cdef void sgemv3(np.ndarray A, np.ndarray x, np.ndarray y):
sgemv5(1.0, A, x, 0.0, y)
cdef np.ndarray sgemv(np.ndarray A, np.ndarray x):
cdef np.ndarray y = svnewempty(A.shape[0])
sgemv5(1.0, A, x, 0.0, y)
return y
# double precision
cdef void dgemv_(CBLAS_ORDER Order, CBLAS_TRANSPOSE TransA, int M, int N,
double alpha, double *A, int lda, double *x, int dx,
double beta, double *y, int dy):
lib_dgemv(Order, TransA, M, N, alpha, A, lda, x, dx, beta, y, dy)
cdef void dgemv6(CBLAS_TRANSPOSE TransA, double alpha, np.ndarray A,
np.ndarray x, double beta, np.ndarray y):
if A.ndim != 2: raise ValueError("A is not a matrix")
if x.ndim != 1: raise ValueError("x is not a vector")
if y.ndim != 1: raise ValueError("y is not a vector")
if A.shape[0] != y.shape[0]: raise ValueError("A rows != y rows")
if A.shape[1] != x.shape[0]: raise ValueError("A columns != x rows")
if A.descr.type_num != NPY_DOUBLE: raise ValueError("A is not of type double")
if x.descr.type_num != NPY_DOUBLE: raise ValueError("x is not of type double")
if y.descr.type_num != NPY_DOUBLE: raise ValueError("y is not of type double")
lib_dgemv(CblasRowMajor, TransA, A.shape[0], A.shape[1], alpha, <double*>A.data,
A.shape[1], <double*>x.data, 1, beta, <double*>y.data, 1)
cdef void dgemv5(double alpha, np.ndarray A, np.ndarray x, double beta, np.ndarray y):
if A.ndim != 2: raise ValueError("A is not a matrix")
if x.ndim != 1: raise ValueError("x is not a vector")
if y.ndim != 1: raise ValueError("y is not a vector")
if A.shape[0] != y.shape[0]: raise ValueError("A rows != y rows")
if A.shape[1] != x.shape[0]: raise ValueError("A columns != x rows")
if A.descr.type_num != NPY_DOUBLE: raise ValueError("A is not of type double")
if x.descr.type_num != NPY_DOUBLE: raise ValueError("x is not of type double")
if y.descr.type_num != NPY_DOUBLE: raise ValueError("y is not of type double")
lib_dgemv(CblasRowMajor, CblasNoTrans, A.shape[0], A.shape[1], alpha,
<double*>A.data, A.shape[1], <double*>x.data, 1, beta, <double*>y.data, 1)
cdef void dgemv3(np.ndarray A, np.ndarray x, np.ndarray y):
dgemv5(1.0, A, x, 0.0, y)
cdef np.ndarray dgemv(np.ndarray A, np.ndarray x):
cdef np.ndarray y = dvnewempty(A.shape[0])
dgemv5(1.0, A, x, 0.0, y)
return y
#
# vector outer-product: A = alpha * outer_product(x, y.T)
#
# Note: when calling this make sure you're working with a buffer otherwise
# a whole lot of Python stuff will be going before the call to this function
# is made in order to get the size of the arrays, there the data is located...
# single precision
cdef void sger_(CBLAS_ORDER Order, int M, int N, float alpha, float *x, int dx,
float *y, int dy, float *A, int lda):
lib_sger(Order, M, N, alpha, x, dx, y, dy, A, lda)
cdef void sger4(float alpha, np.ndarray x, np.ndarray y, np.ndarray A):
if A.ndim != 2: raise ValueError("A is not a matrix")
if x.ndim != 1: raise ValueError("x is not a vector")
if y.ndim != 1: raise ValueError("y is not a vector")
if x.shape[0] != A.shape[0]: raise ValueError("x rows != A rows")
if y.shape[0] != A.shape[1]: raise ValueError("y rows != A columns")
if A.descr.type_num != NPY_FLOAT: raise ValueError("A is not of type float")
if x.descr.type_num != NPY_FLOAT: raise ValueError("x is not of type float")
if y.descr.type_num != NPY_FLOAT: raise ValueError("y is not of type float")
lib_sger(CblasRowMajor, x.shape[0], y.shape[0], alpha,
<float*>x.data, 1, <float*>y.data, 1, <float*>A.data, A.shape[1])
cdef void sger3(np.ndarray x, np.ndarray y, np.ndarray A):
sger4(1.0, x, y, A)
cdef np.ndarray sger(np.ndarray x, np.ndarray y):
cdef np.ndarray A = smnewzero(x.shape[0], y.shape[0])
sger4(1.0, x, y, A)
return A
# double precision
cdef void dger_(CBLAS_ORDER Order, int M, int N, double alpha, double *x, int dx,
double *y, int dy, double *A, int lda):
lib_dger(Order, M, N, alpha, x, dx, y, dy, A, lda)
cdef void dger4(double alpha, np.ndarray x, np.ndarray y, np.ndarray A):
if A.ndim != 2: raise ValueError("A is not a matrix")
if x.ndim != 1: raise ValueError("x is not a vector")
if y.ndim != 1: raise ValueError("y is not a vector")
if x.shape[0] != A.shape[0]: raise ValueError("x rows != A rows")
if y.shape[0] != A.shape[1]: raise ValueError("y rows != A columns")
if A.descr.type_num != NPY_DOUBLE: raise ValueError("A is not of type double")
if x.descr.type_num != NPY_DOUBLE: raise ValueError("x is not of type double")
if y.descr.type_num != NPY_DOUBLE: raise ValueError("y is not of type double")
lib_dger(CblasRowMajor, x.shape[0], y.shape[0], alpha,
<double*>x.data, 1, <double*>y.data, 1, <double*>A.data, A.shape[1])
cdef void dger3(np.ndarray x, np.ndarray y, np.ndarray A):
dger4(1.0, x, y, A)
cdef np.ndarray dger(np.ndarray x, np.ndarray y):
cdef np.ndarray A = dmnewzero(x.shape[0], y.shape[0])
dger4(1.0, x, y, A)
return A
##########################################################################
#
# BLAS LEVEL 3
#
##########################################################################
# matrix times matrix: C = alpha * A B + beta * C
# or C = alpha * A.T B + beta * C
# or C = alpha * A B.T + beta * C
# or C = alpha * A.T B.T + beta * C
#
# single precision
cdef void sgemm_(CBLAS_ORDER Order, CBLAS_TRANSPOSE TransA, CBLAS_TRANSPOSE TransB,
int M, int N, int K, float alpha, float *A, int lda, float *B,
int ldb, float beta, float *C, int ldc):
lib_sgemm(Order, TransA, TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc)
cdef void sgemm7(CBLAS_TRANSPOSE TransA, CBLAS_TRANSPOSE TransB,
float alpha, np.ndarray A, np.ndarray B, float beta, np.ndarray C):
if A.ndim != 2: raise ValueError("A is not a matrix")
if B.ndim != 2: raise ValueError("B is not a matrix")
if C.ndim != 2: raise ValueError("C is not a matrix")
if A.shape[0] != C.shape[0]: raise ValueError("A rows != C columns")
if B.shape[1] != C.shape[1]: raise ValueError("B columns != C rows")
if A.shape[1] != B.shape[0]: raise ValueError("A columns != B rows")
if A.descr.type_num != NPY_FLOAT: raise ValueError("A is not of type float")
if B.descr.type_num != NPY_FLOAT: raise ValueError("B is not of type float")
if C.descr.type_num != NPY_FLOAT: raise ValueError("C is not of type float")
lib_sgemm(CblasRowMajor, TransA, TransB, C.shape[0], C.shape[1], B.shape[0],
alpha, <float*>A.data, A.shape[1], <float*>B.data, B.shape[1],
beta, <float*>C.data, C.shape[1])
cdef void sgemm5(float alpha, np.ndarray A, np.ndarray B,
float beta, np.ndarray C):
if A.ndim != 2: raise ValueError("A is not a matrix")
if B.ndim != 2: raise ValueError("B is not a matrix")
if C.ndim != 2: raise ValueError("C is not a matrix")
if A.shape[0] != C.shape[0]: raise ValueError("A rows != C columns")
if B.shape[1] != C.shape[1]: raise ValueError("B columns != C rows")
if A.shape[1] != B.shape[0]: raise ValueError("A columns != B rows")
if A.descr.type_num != NPY_FLOAT: raise ValueError("A is not of type float")
if B.descr.type_num != NPY_FLOAT: raise ValueError("B is not of type float")
if C.descr.type_num != NPY_FLOAT: raise ValueError("C is not of type float")
lib_sgemm(CblasRowMajor,CblasNoTrans,CblasNoTrans, C.shape[0], C.shape[1],
B.shape[0], alpha, <float*>A.data, A.shape[1], <float*>B.data,
B.shape[1], beta, <float*>C.data, C.shape[1])
cdef void sgemm3(np.ndarray A, np.ndarray B, np.ndarray C): sgemm5(1.0, A, B, 0.0, C)
cdef np.ndarray sgemm(np.ndarray A, np.ndarray B):
cdef np.ndarray C = smnewempty(A.shape[0], B.shape[1])
sgemm5(1.0, A, B, 0.0, C)
return C
# matrix times matrix: C = alpha * A B + beta * C
# or C = alpha * A.T B + beta * C
# or C = alpha * A B.T + beta * C
# or C = alpha * A.T B.T + beta * C
#
# double precision
cdef void dgemm_(CBLAS_ORDER Order, CBLAS_TRANSPOSE TransA, CBLAS_TRANSPOSE TransB,
int M, int N, int K, double alpha, double *A, int lda, double *B,
int ldb, double beta, double *C, int ldc):
lib_dgemm(Order, TransA, TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc)
cdef void dgemm7(CBLAS_TRANSPOSE TransA, CBLAS_TRANSPOSE TransB,
double alpha, np.ndarray A, np.ndarray B, double beta, np.ndarray C):
if A.ndim != 2: raise ValueError("A is not a matrix")
if B.ndim != 2: raise ValueError("B is not a matrix")
if C.ndim != 2: raise ValueError("C is not a matrix")
if A.shape[0] != C.shape[0]: raise ValueError("A rows != C columns")
if B.shape[1] != C.shape[1]: raise ValueError("B columns != C rows")
if A.shape[1] != B.shape[0]: raise ValueError("A columns != B rows")
if A.descr.type_num != NPY_DOUBLE: raise ValueError("A is not of type double")
if B.descr.type_num != NPY_DOUBLE: raise ValueError("B is not of type double")
if C.descr.type_num != NPY_DOUBLE: raise ValueError("C is not of type double")
lib_dgemm(CblasRowMajor, TransA, TransB, C.shape[0], C.shape[1], B.shape[0],
alpha, <double*>A.data, A.shape[1], <double*>B.data, B.shape[1],
beta, <double*>C.data, C.shape[1])
cdef void dgemm5(double alpha, np.ndarray A, np.ndarray B,
double beta, np.ndarray C):
if A.ndim != 2: raise ValueError("A is not a matrix")
if B.ndim != 2: raise ValueError("B is not a matrix")
if C.ndim != 2: raise ValueError("C is not a matrix")
if A.shape[0] != C.shape[0]: raise ValueError("A rows != C columns")
if B.shape[1] != C.shape[1]: raise ValueError("B columns != C rows")
if A.shape[1] != B.shape[0]: raise ValueError("A columns != B rows")
if A.descr.type_num != NPY_DOUBLE: raise ValueError("A is not of type double")
if B.descr.type_num != NPY_DOUBLE: raise ValueError("B is not of type double")
if C.descr.type_num != NPY_DOUBLE: raise ValueError("C is not of type double")
lib_dgemm(CblasRowMajor,CblasNoTrans,CblasNoTrans, C.shape[0], C.shape[1],
B.shape[0], alpha, <double*>A.data, A.shape[1], <double*>B.data,
B.shape[1], beta, <double*>C.data, C.shape[1])
cdef void dgemm3(np.ndarray A, np.ndarray B, np.ndarray C):
dgemm5(1.0, A, B, 0.0, C)
cdef np.ndarray dgemm(np.ndarray A, np.ndarray B):
cdef np.ndarray C = dmnewempty(A.shape[0], B.shape[1])
dgemm5(1.0, A, B, 0.0, C)
return C
#########################################################################
#
# Utility functions I've added myself
#
#########################################################################
# Create a new empty single precision matrix
cdef np.ndarray smnewempty(int M, int N):
cdef np.npy_intp length[2]
length[0] = M; length[1] = N
Py_INCREF(np.NPY_FLOAT) # This is apparently necessary
return PyArray_EMPTY(2, length, np.NPY_FLOAT, 0)
# Create a new empty double precision matrix
cdef np.ndarray dmnewempty(int M, int N):
cdef np.npy_intp length[2]
length[0] = M; length[1] = N
Py_INCREF(np.NPY_DOUBLE) # This is apparently necessary
return PyArray_EMPTY(2, length, np.NPY_DOUBLE, 0)
# Create a new empty single precision vector
cdef np.ndarray svnewempty(int M):
cdef np.npy_intp length[1]
length[0] = M
Py_INCREF(np.NPY_FLOAT) # This is apparently necessary
return PyArray_EMPTY(1, length, np.NPY_FLOAT, 0)
# Create a new empty double precision vector
cdef np.ndarray dvnewempty(int M):
cdef np.npy_intp length[1]
length[0] = M
Py_INCREF(np.NPY_DOUBLE) # This is apparently necessary
return PyArray_EMPTY(1, length, np.NPY_DOUBLE, 0)
# Create a new zeroed single precision matrix
cdef np.ndarray smnewzero(int M, int N):
cdef np.npy_intp length[2]
length[0] = M; length[1] = N
Py_INCREF(np.NPY_FLOAT) # This is apparently necessary
return PyArray_ZEROS(2, length, np.NPY_FLOAT, 0)
# Create a new zeroed double precision matrix
cdef np.ndarray dmnewzero(int M, int N):
cdef np.npy_intp length[2]
length[0] = M; length[1] = N
Py_INCREF(np.NPY_DOUBLE) # This is apparently necessary
return PyArray_ZEROS(2, length, np.NPY_DOUBLE, 0)
# Create a new zeroed single precision vector
cdef np.ndarray svnewzero(int M):
cdef np.npy_intp length[1]
length[0] = M
Py_INCREF(np.NPY_FLOAT) # This is apparently necessary
return PyArray_ZEROS(1, length, np.NPY_FLOAT, 0)
# Create a new zeroed double precision vector
cdef np.ndarray dvnewzero(int M):
cdef np.npy_intp length[1]
length[0] = M
Py_INCREF(np.NPY_DOUBLE) # This is apparently necessary
return PyArray_ZEROS(1, length, np.NPY_DOUBLE, 0)
# Set a matrix to all zeros: must be floats in contiguous memory.
cdef void smsetzero(np.ndarray A):
if A.ndim != 2: raise ValueError("A is not a matrix")
if A.descr.type_num != NPY_FLOAT: raise ValueError("A is not of type float")
cdef float *ptr = <float*>A.data
cdef unsigned int i
for i in range(A.shape[0]*A.shape[1]):
ptr[0] = 0.0
ptr += 1
# Set a matrix to all zeros: must be doubles in contiguous memory.
cdef void dmsetzero(np.ndarray A):
if A.ndim != 2: raise ValueError("A is not a matrix")
if A.descr.type_num != NPY_DOUBLE: raise ValueError("A is not of type double")
cdef double *ptr = <double*>A.data
cdef unsigned int i
for i in range(A.shape[0]*A.shape[1]):
ptr[0] = 0.0
ptr += 1
# Set a vector to all zeros: ust be floats in contiguous memory.
cdef void svsetzero(np.ndarray x):
if x.ndim != 1: raise ValueError("A is not a vector")
if x.descr.type_num != NPY_FLOAT: raise ValueError("x is not of type float")
cdef float *ptr = <float*>x.data
cdef unsigned int i
for i in range(x.shape[0]):
ptr[0] = 0.0
ptr += 1
# Set a vector to all zeros: ust be doubles in contiguous memory.
cdef void dvsetzero(np.ndarray x):
if x.ndim != 1: raise ValueError("A is not a vector")
if x.descr.type_num != NPY_DOUBLE: raise ValueError("x is not of type double")
cdef double *ptr = <double*>x.data
cdef unsigned int i
for i in range(x.shape[0]):
ptr[0] = 0.0
ptr += 1
# Just pretend the matrices are vectors and call the BLAS daxpy routine
# Y += a * X
# single precision
cdef void smaxpy(float alpha, np.ndarray X, np.ndarray Y):
if X.ndim != 2: raise ValueError("A is not a matrix")
if Y.ndim != 2: raise ValueError("A is not a matrix")
if X.shape[0] != Y.shape[0]: raise ValueError("X rows != Y rows")
if X.shape[1] != Y.shape[1]: raise ValueError("X columns != Y columns")
if X.descr.type_num != NPY_FLOAT: raise ValueError("X is not of type float")
if Y.descr.type_num != NPY_FLOAT: raise ValueError("Y is not of type float")
cdef unsigned int N = X.shape[0]*X.shape[1]
lib_saxpy(N, alpha, <float*>X.data, 1, <float*>Y.data, 1)
# Just pretend the matrices are vectors and call the BLAS daxpy routine
# Y += a * X
# double precision
cdef void dmaxpy(double alpha, np.ndarray X, np.ndarray Y):
if X.ndim != 2: raise ValueError("A is not a matrix")
if Y.ndim != 2: raise ValueError("A is not a matrix")
if X.shape[0] != Y.shape[0]: raise ValueError("X rows != Y rows")
if X.shape[1] != Y.shape[1]: raise ValueError("X columns != Y columns")
if X.descr.type_num != NPY_DOUBLE: raise ValueError("X is not of type double")
if Y.descr.type_num != NPY_DOUBLE: raise ValueError("Y is not of type double")
cdef unsigned int N = X.shape[0]*X.shape[1]
lib_daxpy(N, alpha, <double*>X.data, 1, <double*>Y.data, 1)