Skip to content

Latest commit

 

History

History
1391 lines (1227 loc) · 42.7 KB

HashMap详解(1.7和1.8).md

File metadata and controls

1391 lines (1227 loc) · 42.7 KB

HashMap 1.7

使用数组加链表实现hashmap。

hashmap初始容量为16,装载因子为0.75,hashmap里面的元素达到阈值(阈值=容量 * 装载因子)时,就会进行扩容,每次扩容2倍。

put方法

public V put(K key, V value) {
// 当第一次往里面放元素时才真正地申请空间
if (table == EMPTY_TABLE) {
inflateTable(threshold);
}
if (key == null)
return putForNullKey(value);
// 计算hash值
int hash = hash(key);
// 计算索引值,大小为0到table.length - 1
int i = indexFor(hash, table.length);
// 如果已经存在这个key,则更新value值
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}

modCount++;
// 不存在这个key,就新增
addEntry(hash, key, value, i);
return null;
}

inflateTable

为数组申请空间

private void inflateTable(int toSize) {
// Find a power of 2 >= toSize
int capacity = roundUpToPowerOf2(toSize);

threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
table = new Entry[capacity];
// initHashSeedAsNeeded方法判断是否需要rehash
initHashSeedAsNeeded(capacity);
}

roundUpToPowerOf2

每次最接近number的数,而且是2的幂次方的数。如number=8就返回8,number=9就返回15

private static int roundUpToPowerOf2(int number) {
// assert number >= 0 : "number must be non-negative";
return number >= MAXIMUM_CAPACITY
? MAXIMUM_CAPACITY
: (number > 1) ? Integer.highestOneBit((number - 1) << 1) : 1;
}

putForNullKey

如果已经存在null键则更新其value,否则将null键添加到数组中

private V putForNullKey(V value) {
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
addEntry(0, null, value, 0);
return null;
}

hash方法

将hashcode的高位和低位混合求hash值,减少冲突

final int hash(Object k) {
int h = hashSeed;
if (0 != h && k instanceof String) {
return sun.misc.Hashing.stringHash32((String) k);
}

h ^= k.hashCode();

// This function ensures that hashCodes that differ only by
// constant multiples at each bit position have a bounded
// number of collisions (approximately 8 at default load factor).
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}

indexFor方法

hash & (length -1)可以将所有hash值映射到0到length-1范围内,这也解释了为什么hashmap的容量必须是2的倍数。

static int indexFor(int h, int length) {
// assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";
return h & (length-1);
}

addEntry方法

void addEntry(int hash, K key, V value, int bucketIndex) {
// 扩容
if ((size >= threshold) && (null != table[bucketIndex])) {
resize(2 * table.length);
// 重新hash值
hash = (null != key) ? hash(key) : 0;
// 重新计算索引位置
bucketIndex = indexFor(hash, table.length);
}
// 添加新元素
createEntry(hash, key, value, bucketIndex);
}

resize方法——扩容

void resize(int newCapacity) {
// 旧数组
Entry[] oldTable = table;
// 旧容量
int oldCapacity = oldTable.length;
// 如果旧容量等于最大容量,则直接返回,无法扩容
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
// 新建一个数组
Entry[] newTable = new Entry[newCapacity];
// 将原始table中元素复制到newTable
transfer(newTable, initHashSeedAsNeeded(newCapacity));
table = newTable;
threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}

initHashSeedAsNeeded方法

initHashSeedAsNeeded方法判断是否需要rehash

final boolean initHashSeedAsNeeded(int capacity) {
// hashSeed降低hash碰撞的hash种子,初始值为0
boolean currentAltHashing = hashSeed != 0;
//ALTERNATIVE_HASHING_THRESHOLD: 当map的capacity容量大于这个值的时候并满足其他条件时候进行重新hash
boolean useAltHashing = sun.misc.VM.isBooted() && (capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
//TODO 异或操作,二者满足一个条件即可rehash
boolean switching = currentAltHashing ^ useAltHashing;
if (switching) {
// 更新hashseed的值
hashSeed = useAltHashing ? sun.misc.Hashing.randomHashSeed(this) : 0;
}
return switching;
}

transfer方法

将原始table中元素复制到newTable

如果多线程并发扩容时会形成循环链表,线程A执行完Entry<K,V> next = e.next;,如果让给线程B执行,线程B执行完扩容后,线程A还会继续扩容,这种情况下就会形成循环链表。采用尾插法可以解决这个问题,所以jdk1.8就采用尾插法了。

void transfer(Entry[] newTable, boolean rehash) {
int newCapacity = newTable.length;
for (Entry<K,V> e : table) {
while(null != e) {
Entry<K,V> next = e.next;
// 如果需要重新hash就重新hash
if (rehash) {
e.hash = null == e.key ? 0 : hash(e.key);
}
// 计算索引位置
int i = indexFor(e.hash, newCapacity);
// 头插法
e.next = newTable[i];
newTable[i] = e;
e = next;
}
}
}

createEntry方法

如果没有超过阈值,则直接存入table

void createEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];
// 头插法
table[bucketIndex] = new Entry<>(hash, key, value, e);
size++;
}

Entry

Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}

get方法

public V get(Object key) {
if (key == null)
return getForNullKey();
// 调用getEntry方法
Entry<K,V> entry = getEntry(key);

return null == entry ? null : entry.getValue();
}

getForNullKey方法

key = null映射为索引0,查找table[0]中有没有key=null的结点

private V getForNullKey() {
if (size == 0) {
return null;
}
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null)
return e.value;
}
return null;
}

getEntry方法

final Entry<K,V> getEntry(Object key) {
if (size == 0) {
return null;
}

int hash = (key == null) ? 0 : hash(key);
// 先找到在那个table[i],然后遍历链表找到这个key
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
return null;
}

HashMap 1.8

HashMap结构图:

HashMap:它根据键的hashCode值存储数据,大多数情况下可以直接定位到它的值,因而具有很快的访问速度,但遍历顺序却是不确定的。 HashMap最多只允许一条记录的键为null,允许多条记录的值为null。HashMap非线程安全,即任一时刻可以有多个线程同时写HashMap,可能会导致数据的不一致。如果需要满足线程安全,可以用 Collections的synchronizedMap方法使HashMap具有线程安全的能力,或者使用ConcurrentHashMap。

默认的初始容量是16 默认的负载因子0.75 当桶上的结点数大于等于8会转成红黑树 当桶上的结点数小于6红黑树转链表 Node<k,v>[] table //存储元素的哈希桶数组,总是2的幂次倍

源码

public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable {

private static final long serialVersionUID = 362498820763181265L;

/**
* The default initial capacity - MUST be a power of two.
* 默认容量
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

/**
* The maximum capacity, used if a higher value is implicitly specified
* by either of the constructors with arguments.
* MUST be a power of two <= 1<<30.
* 最大容量
*/
static final int MAXIMUM_CAPACITY = 1 << 30;

/**
* The load factor used when none specified in constructor.
* 装载因子
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;

/**
* The bin count threshold for using a tree rather than list for a
* bin.  Bins are converted to trees when adding an element to a
* bin with at least this many nodes. The value must be greater
* than 2 and should be at least 8 to mesh with assumptions in
* tree removal about conversion back to plain bins upon
* shrinkage.
* 当桶中结点达到8时,将转为红黑树
*/
static final int TREEIFY_THRESHOLD = 8;

/**
* The bin count threshold for untreeifying a (split) bin during a
* resize operation. Should be less than TREEIFY_THRESHOLD, and at
* most 6 to mesh with shrinkage detection under removal.
* 当桶中结点小于6时,将由红黑树转为链表
*/
static final int UNTREEIFY_THRESHOLD = 6;

/**
* The smallest table capacity for which bins may be treeified.
* (Otherwise the table is resized if too many nodes in a bin.)
* Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
* between resizing and treeification thresholds.
* 桶树化,哈希表最小的容量
*/
static final int MIN_TREEIFY_CAPACITY = 64;

/**
* Basic hash bin node, used for most entries.  (See below for
* TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
* 数组中每一个元素的类型
*/
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;

Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}

public final K getKey()        { return key; }
public final V getValue()      { return value; }
public final String toString() { return key + "=" + value; }

public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}

public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}

public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}

/* ---------------- Static utilities -------------- */

/**
* Computes key.hashCode() and spreads (XORs) higher bits of hash
* to lower.  Because the table uses power-of-two masking, sets of
* hashes that vary only in bits above the current mask will
* always collide. (Among known examples are sets of Float keys
* holding consecutive whole numbers in small tables.)  So we
* apply a transform that spreads the impact of higher bits
* downward. There is a tradeoff between speed, utility, and
* quality of bit-spreading. Because many common sets of hashes
* are already reasonably distributed (so don't benefit from
* spreading), and because we use trees to handle large sets of
* collisions in bins, we just XOR some shifted bits in the
* cheapest possible way to reduce systematic lossage, as well as
* to incorporate impact of the highest bits that would otherwise
* never be used in index calculations because of table bounds.
* hash值计算方法,将key.hashCode() 与 key.hashCode()右移16位做异或运算
*/
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

/**
* Returns x's Class if it is of the form "class C implements
* Comparable<C>", else null.
*/
static Class<?> comparableClassFor(Object x) {
if (x instanceof Comparable) {
Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
if ((c = x.getClass()) == String.class) // bypass checks
return c;
if ((ts = c.getGenericInterfaces()) != null) {
for (int i = 0; i < ts.length; ++i) {
if (((t = ts[i]) instanceof ParameterizedType) &&
((p = (ParameterizedType)t).getRawType() ==
Comparable.class) &&
(as = p.getActualTypeArguments()) != null &&
as.length == 1 && as[0] == c) // type arg is c
return c;
}
}
}
return null;
}

/**
* Returns k.compareTo(x) if x matches kc (k's screened comparable
* class), else 0.
*/
@SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
static int compareComparables(Class<?> kc, Object k, Object x) {
return (x == null || x.getClass() != kc ? 0 :
((Comparable)k).compareTo(x));
}

/**
* Returns a power of two size for the given target capacity.
* 返回大于输入参数且最近的2的整数次幂的数。如cap=10,返回结果就是16
*/
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

/* ---------------- Fields -------------- */

/**
* The table, initialized on first use, and resized as
* necessary. When allocated, length is always a power of two.
* (We also tolerate length zero in some operations to allow
* bootstrapping mechanics that are currently not needed.)
* 数组
*/
transient Node<K,V>[] table;

/**
* Holds cached entrySet(). Note that AbstractMap fields are used
* for keySet() and values().
*/
transient Set<Map.Entry<K,V>> entrySet;

/**
* The number of key-value mappings contained in this map.
* map包含的元素大小
*/
transient int size;

/**
* The number of times this HashMap has been structurally modified
* Structural modifications are those that change the number of mappings in
* the HashMap or otherwise modify its internal structure (e.g.,
* rehash).  This field is used to make iterators on Collection-views of
* the HashMap fail-fast.  (See ConcurrentModificationException).
* 修改次数
*/
transient int modCount;

/**
* The next size value at which to resize (capacity * load factor).
*
* @serial
*/
// (The javadoc description is true upon serialization.
// Additionally, if the table array has not been allocated, this
// field holds the initial array capacity, or zero signifying
// DEFAULT_INITIAL_CAPACITY.)
// 阈值就是容量*装载因子
int threshold;

/**
* The load factor for the hash table.
*
* @serial
*/
final float loadFactor;

/* ---------------- Public operations -------------- */

/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and load factor.
*
* @param  initialCapacity the initial capacity
* @param  loadFactor      the load factor
* @throws IllegalArgumentException if the initial capacity is negative
*         or the load factor is nonpositive
*/
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
// 找到最接近initialCapacity的,且是2的幂次方的数
this.threshold = tableSizeFor(initialCapacity);
}

/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and the default load factor (0.75).
*
* @param  initialCapacity the initial capacity.
* @throws IllegalArgumentException if the initial capacity is negative.
*/
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

/**
* Constructs an empty <tt>HashMap</tt> with the default initial capacity
* (16) and the default load factor (0.75).
*/
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}

/**
* Constructs a new <tt>HashMap</tt> with the same mappings as the
* specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
* default load factor (0.75) and an initial capacity sufficient to
* hold the mappings in the specified <tt>Map</tt>.
*
* @param   m the map whose mappings are to be placed in this map
* @throws  NullPointerException if the specified map is null
*/
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}

/**
* Implements Map.putAll and Map constructor
*
* @param m the map
* @param evict false when initially constructing this map, else
* true (relayed to method afterNodeInsertion).
* putMapEntries调用了putVal, putVal已详细注释
*/
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
int s = m.size();
if (s > 0) {
if (table == null) { // pre-size
float ft = ((float)s / loadFactor) + 1.0F;
int t = ((ft < (float)MAXIMUM_CAPACITY) ?
(int)ft : MAXIMUM_CAPACITY);
if (t > threshold)
threshold = tableSizeFor(t);
}
else if (s > threshold)
// 扩容
resize();
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
putVal(hash(key), key, value, false, evict);
}
}
}

/**
* Returns the number of key-value mappings in this map.
*
* @return the number of key-value mappings in this map
*/
public int size() {
return size;
}

/**
* Returns <tt>true</tt> if this map contains no key-value mappings.
*
* @return <tt>true</tt> if this map contains no key-value mappings
*/
public boolean isEmpty() {
return size == 0;
}

/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* <p>More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code (key==null ? k==null :
* key.equals(k))}, then this method returns {@code v}; otherwise
* it returns {@code null}.  (There can be at most one such mapping.)
*
* <p>A return value of {@code null} does not <i>necessarily</i>
* indicate that the map contains no mapping for the key; it's also
* possible that the map explicitly maps the key to {@code null}.
* The {@link #containsKey containsKey} operation may be used to
* distinguish these two cases.
*
* @see #put(Object, Object)
*/
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}

/**
* Implements Map.get and related methods
*
* @param hash hash for key
* @param key the key
* @return the node, or null if none
*/
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
// table != null, 数组不为空,tab[(n - 1) & hash])存在才查找,否则返回null
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 检查第一个结点是不是就是需要查找的key
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
// 如果第一个结点不是,就继续往下查找,一种是红黑树的情况,一种是链表的情况
if ((e = first.next) != null) {
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
// 遍历链表
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}

/**
* Returns <tt>true</tt> if this map contains a mapping for the
* specified key.
*
* @param   key   The key whose presence in this map is to be tested
* @return <tt>true</tt> if this map contains a mapping for the specified
* key.
* 获取不到这个key,就是不存在
*/
public boolean containsKey(Object key) {
return getNode(hash(key), key) != null;
}

/**
* Associates the specified value with the specified key in this map.
* If the map previously contained a mapping for the key, the old
* value is replaced.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with <tt>key</tt>, or
*         <tt>null</tt> if there was no mapping for <tt>key</tt>.
*         (A <tt>null</tt> return can also indicate that the map
*         previously associated <tt>null</tt> with <tt>key</tt>.)
*/
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}

/**
* Implements Map.put and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
* 核心方法之一,存入key、value
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 如果table=null或者tab.length=0,就进行扩容
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 此处对应没有产生hash冲突的情况,直接使tab[i]等于一个新创建的Node结点
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {  // 产生hash冲突
Node<K,V> e; K k;
// 第一个结点就是要找的结点
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
// 到红黑树中查找
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
// p.next = null表示没有找到,直接插入一个新结点
p.next = newNode(hash, key, value, null);
// 如果binCount大于等于7,就转化为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// 更新结点值
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
// 如果大于阈值,就进行扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}

/**
* Initializes or doubles table size.  If null, allocates in
* accord with initial capacity target held in field threshold.
* Otherwise, because we are using power-of-two expansion, the
* elements from each bin must either stay at same index, or move
* with a power of two offset in the new table.
*
* @return the table
* 扩容,返回一个新数组
*/
final Node<K,V>[] resize() {
// 旧数组
Node<K,V>[] oldTab = table;
// 旧容量
int oldCap = (oldTab == null) ? 0 : oldTab.length;
// 旧阈值
int oldThr = threshold;
// 新容量,新阈值
int newCap, newThr = 0;
if (oldCap > 0) {
// 旧容量大于等于最大容量,则阈值直接等于int最大值,返回原数组,无法进行扩容了
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 新容量设置为旧容量的2倍,新阈值也设置为旧阈值的2倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
// 新容量设置为旧阈值
newCap = oldThr;
else {               // zero initial threshold signifies using defaults
// 旧容量等于0的情况,说明刚进行插入,使用默认容量
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 设置新容量的值
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
// 扩容就是新建一个数组,把原数组里面的数据存入新数组
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
// 下面这个循环,就是将原数组中的数据存到新数组
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
// 数组j的位置只有一个元素
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
// 对应红黑树的情况
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
// 链表
// loHead和loTail用于记录oldTab[j]中结点,扩容后索引位置不变的情况
Node<K,V> loHead = null, loTail = null;
// hiHead和hiTail用于记录oldTab[j]中结点,扩容后索引位置等于原位置+原容量的情况
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
// 这个if成立,说明e结点扩容后还是在j位置
if ((e.hash & oldCap) == 0) {
// 尾插法
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
// 这个if成立,说明e结点扩容后,存储在j+oldCap位置,也是尾插法
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// loHead链表扩容后还在j位置
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// hiHead链表对应新数组的位置就是,j + oldCap,这里也就是为什么数组大小一定要是2的倍数
// 注意到,这里不需要重新hash,可以节省hash时间,其实就算就行重新hash,rehash的值也
// 是j + oldCap,这就是hashmap非常巧妙的地方。
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}

/**
* Replaces all linked nodes in bin at index for given hash unless
* table is too small, in which case resizes instead.
* 红黑树太复杂,具体操作就不看了,把其他内容掌握就可以了
*/
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null;
do {
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}

/**
* Copies all of the mappings from the specified map to this map.
* These mappings will replace any mappings that this map had for
* any of the keys currently in the specified map.
*
* @param m mappings to be stored in this map
* @throws NullPointerException if the specified map is null
*/
public void putAll(Map<? extends K, ? extends V> m) {
putMapEntries(m, true);
}

/**
* Removes the mapping for the specified key from this map if present.
*
* @param  key key whose mapping is to be removed from the map
* @return the previous value associated with <tt>key</tt>, or
*         <tt>null</tt> if there was no mapping for <tt>key</tt>.
*         (A <tt>null</tt> return can also indicate that the map
*         previously associated <tt>null</tt> with <tt>key</tt>.)
*/
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}

/**
* Implements Map.remove and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to match if matchValue, else ignored
* @param matchValue if true only remove if value is equal
* @param movable if false do not move other nodes while removing
* @return the node, or null if none
* 删除结点
*/
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
// 第一个结点就是要删除的结点,用node记录下来
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
// 到红黑树中查找
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
// 在链表中查找
else {
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
// 删除node结点
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
// 红黑树情况,
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
// node=p,第一个结点就是要删除的结点,直接tab[index] = node.next;
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
// 这个方法是一个空方法,留给子类覆写,如LinkedHashMap就覆写了这个方法
afterNodeRemoval(node);
return node;
}
}
return null;
}

/**
* Removes all of the mappings from this map.
* The map will be empty after this call returns.
* 将tab置null
*/
public void clear() {
Node<K,V>[] tab;
modCount++;
if ((tab = table) != null && size > 0) {
size = 0;
for (int i = 0; i < tab.length; ++i)
tab[i] = null;
}
}

/**
* Returns <tt>true</tt> if this map maps one or more keys to the
* specified value.
*
* @param value value whose presence in this map is to be tested
* @return <tt>true</tt> if this map maps one or more keys to the
*         specified value
* 挨个遍历判断
*/
public boolean containsValue(Object value) {
Node<K,V>[] tab; V v;
if ((tab = table) != null && size > 0) {
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next) {
if ((v = e.value) == value ||
(value != null && value.equals(v)))
return true;
}
}
}
return false;
}
}

tableSizeFor

/**
* Returns a power of two size for the given target capacity.
* 返回大于输入参数且最近的2的整数次幂的数。如cap=10,返回结果就是16
*/
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

先来分析有关n位操作部分:先来假设n的二进制为01xxx...xxx。接着

对n右移1位:001xx...xxx,再位或:011xx...xxx

对n右移2为:00011...xxx,再位或:01111...xxx

此时前面已经有四个1了,再右移4位且位或可得8个1

同理,有8个1,右移8位肯定会让后八位也为1。

综上可得,该算法让最高位的1后面的位全变为1。

最后再让结果n+1,即得到了2的整数次幂的值了。

现在回来看看第一条语句:

int n = cap - 1;

让cap-1再赋值给n的目的是另找到的目标值大于或等于原值。例如二进制1000,十进制数值为8。如果不对它减1而直接操作,将得到答案10000,即16。显然不是结果。减1后二进制为111,再进行操作则会得到原来的数值1000,即8。

为什么哈希数组table的大小必须是2的倍数(合数)?

  1. 当数组长度为2的幂次方时,可以使用位运算来计算元素在数组中的下标
  2. 增加hash值的随机性,减少hash冲突

看一下hashmap的源码:

//计算hash值
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

h >>> 16表示无符号右移16位,低位挤走,高位补0;^ 为按位异或,即转成二进制后,相异为1,相同为0;由此可发现,当传入的值小于 2的16次方-1 时,调用这个方法返回的值,都是自身的值。

右位移16位,正好是32bit的一半,自己的高半区和低半区做异或,就是为了混合原始哈希码的高位和低位,以此来加大低位的随机性。而且混合后的低位掺杂了高位的部分特征,这样高位的信息也被变相保留下来。 假如没有进行高位运算,那最后参与运算的永远只是取模运算的最后几位,相似性会比较大。

JDK 源码中 HashMap 的 hash 方法原理

hash函数的主要作用就是:增大随机性,减少碰撞。

hashmap中put的源码:

public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}

/**
* Implements Map.put and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
* 核心方法之一,存入key、value
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 如果table=null或者tab.length=0,就进行扩容
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 此处对应没有产生hash冲突的情况,直接使tab[i]等于一个新创建的Node结点
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {  // 产生hash冲突
Node<K,V> e; K k;
// 第一个结点就是要找的结点
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
// 到红黑树中查找
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
// p.next = null表示没有找到,直接插入一个新结点
p.next = newNode(hash, key, value, null);
// 如果binCount大于等于7,就转化为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// 更新结点值
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
// 如果大于阈值,就进行扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}

里面非常巧妙的代码是p = tab[i = (n - 1) & hash],tab是hashmap存放存放元素的数组,(n - 1) & hash也解释了为什么table的大小要是2的倍数。

如果n是默认大小16,没有扩容,(n - 1) & hash的计算结果就是hash值本身;见下图:

如果n扩容,扩容大小是原大小*2,为什么n一定要是2的倍数?举个例子:

oldCap=16 二进制为0001 0000  // oldCap是扩容之前的table大小
oldCap-1=15 二进制为0000 1111   // 如果oldCap是2的倍数,低位就全部是1,与hash进行&运算,hash值不变
e1.hash=10 二进制为0000 1010
e2.hash=26 二进制为0101 1010
e1在扩容前的位置为e1.hash & oldCap-1  结果为0000 1010
e2在扩容前的位置为e2.hash & oldCap-1  结果为0000 1010
结果相同所以e1和e2在扩容前在同一个链表上这是扩容之前的状态现在扩容后需要重新计算元素的位置在扩容前的链表中计算地址的方式为e.hash & oldCap-1
那么在扩容后应该也这么计算呀扩容后的容量为oldCap*2=32 0010 0000 newCap=32新的计算
方式应该为
e1.hash & newCap-1
0000 1010 & 0001 1111
结果为0000 1010与扩容前的位置完全一样e2.hash & newCap-1
0101 1010 & 0001 1111
结果为0001 1010,为扩容前位置+oldCap

由此可见,扩容后的hashmap本来存储的元素,元素的hash值比原容量小,扩容后位置不变,元素的hash值比原容量大,扩容后的位置就是扩容前位置+原容量,直接可以计算出扩容后的位置,减少了一次求hash值的次数(不需要像JDK1.7的实现那样重新计算hash);而且将有冲突的数据均匀的分散到新的空间上;而且&运算比%取模运算要快;

当桶上的结点数大于8会转成红黑树:

红黑树的查找速度更快,查找速度优化为O(logn)。

红黑树知识可以查看我的另一篇教程,红黑树。或者下面的教程

如何扩容

HashMap每次扩容都是建立一个新的table数组,长度和容量阈值都变为原来的两倍,然后把原数组元素重新映射到新数组上,具体步骤如下:

  1. 首先会判断table数组长度,如果大于0说明已被初始化过,那么按当前table数组长度的2倍进行扩容,阈值也变为原来的2倍
  2. 若table数组未被初始化过,且threshold(阈值)大于0说明调用了HashMap(initialCapacity, loadFactor)构造方法,那么就把数组大小设为threshold
  3. 若table数组未被初始化,且threshold为0说明调用HashMap()构造方法,那么就把数组大小设为16,threshold设为16*0.75
  4. 接着需要判断如果不是第一次初始化,那么扩容之后,要重新计算键值对的位置,并把它们移动到合适的位置上去,如果节点是红黑树类型的话则需要进行红黑树的拆分。

这里有一个需要注意的点就是在JDK1.8 HashMap扩容阶段重新映射元素时不需要像1.7版本那样重新去一个个计算元素的hash值,而是通过hash & oldCap的值来判断,若为0则索引位置不变,不为0则新索引=原索引+旧数组长度,为什么呢?具体原因如下:

因为我们使用的是2次幂的扩展(指长度扩为原来2倍),所以,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。因此,我们在扩充HashMap的时候,不需要像JDK1.7的实现那样重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap

为什么用hash & oldCap做判断,假设oldCap=16,二进制是10000,15的二进制是1111,hash & (length - 1)用了四位二进制可以得到所在的索引,如果需要扩容,就是原容量*2,也就是取5位二进制与hash做与算法,这里用hash & oldCap这种非常巧妙的方法,判断hash的倒数第五位二进制是不是1,如果是1,说明应该索引变成“原索引+oldCap”,为什么不用重新hash?因为重新hash的结果也是原索引+oldCap,无非就是用五位二进制算一下,通过hash & oldCap这种方式已经判断了;如果是hash & oldCap= 0,说明原位置不用动。这里非常巧妙,如果还不懂,我也没办法了,你们仔细想想。

扩容代码:

final Node<K,V>[] resize() {
// 旧数组
Node<K,V>[] oldTab = table;
// 旧容量
int oldCap = (oldTab == null) ? 0 : oldTab.length;
// 旧阈值
int oldThr = threshold;
// 新容量,新阈值
int newCap, newThr = 0;
if (oldCap > 0) {
// 旧容量大于等于最大容量,则阈值直接等于int最大值,返回原数组,无法进行扩容了
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 新容量设置为旧容量的2倍,新阈值也设置为旧阈值的2倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
// 新容量设置为旧阈值
newCap = oldThr;
else {               // zero initial threshold signifies using defaults
// 旧容量等于0的情况,说明刚进行插入,使用默认容量
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 设置新容量的值
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
// 扩容就是新建一个数组,把原数组里面的数据存入新数组
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
// 下面这个循环,就是将原数组中的数据存到新数组
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
// 数组j的位置只有一个元素
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
// 对应红黑树的情况
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
// 链表
// loHead和loTail用于记录oldTab[j]中结点,扩容后索引位置不变的情况
Node<K,V> loHead = null, loTail = null;
// hiHead和hiTail用于记录oldTab[j]中结点,扩容后索引位置等于原位置+原容量的情况
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
// 这个if成立,说明e结点扩容后还是在j位置
if ((e.hash & oldCap) == 0) {
// 尾插法
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
// 这个if成立,说明e结点扩容后,存储在j+oldCap位置,也是尾插法
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// loHead链表扩容后还在j位置
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// hiHead链表对应新数组的位置就是,j + oldCap,这里也就是为什么数组大小一定要是2的倍数
// 注意到,这里不需要重新索引位置,在原容量 & hash=1的情况下,如果重新计算(原容量*2 - 1) & hash,
// 其计算结果也是j + oldCap, 这就是hashmap非常巧妙的地方。
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}

为什么链表长度大于8才变为红黑树

因为容器中节点分布在hash桶中的频率遵循lambda=0.5的泊松分布,桶的长度超过8的概率非常非常小,约0.00000006。所以一般情况下都不会转为红黑树,如果你自己写的类当做hashmap的key,实现了hashcode和equals方法,hashcode写的太烂,就有可能导致hash桶中元素超过8,避免查找、删除效率太低,所以要转为红黑树。

为什么不直接使用红黑树,而是链表长度大于8才专为红黑树

因为红黑树占用空间是链表的两倍,而且当链表长度短时,红黑树不一定比链表快。

多线程环境下,HashMap 1.8依然会出现死循环的情况

多线程环境下,HashMap 1.8依然会出现死循环的情况,发生在向红黑树添加节点中。多跑几遍下面代码可以跑出死循环。

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.atomic.AtomicInteger;

/**
* jdk7 扩容时都可能导致死锁
* jdk8 在PutTreeValue时可能死循环   死循环在hashMap的1816行或2229行, java version "1.8.0_111"
* jstack发现可能卡在 at java.util.HashMap$TreeNode.balanceInsertion(HashMap.java:2229)
* 也有可能卡在  at java.util.HashMap$TreeNode.root(HashMap.java:1816)
*
* @since 2019-02-23
*/
public class HashMap1 {

public static void main(String[] args) {
HashMap<Integer, Integer> map = new HashMap<Integer, Integer>(1);
for (int i = 0; i < 200; i++) {
new HashMapThread(map).start();
}
}
}

class HashMapThread extends Thread {
private static AtomicInteger ai = new AtomicInteger(0);
private HashMap<Integer, Integer> map;

HashMapThread(HashMap<Integer, Integer> map) {
this.map = map;
}

@Override
public void run() {
while (ai.get() < 100000) {
map.put(ai.get(), ai.get());
ai.incrementAndGet();
}
System.out.println(Thread.currentThread().getName() + "执行结束完");
}
}

参考链接


欢迎关注我的公众号呦,率先更新内容,并且后续还有一些源码级的免费教程推出。