-
Notifications
You must be signed in to change notification settings - Fork 1
/
evalSync.jl
206 lines (181 loc) · 6.11 KB
/
evalSync.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
@everywhere begin
include("HyperParameter.jl")
include("Cluster.jl")
include("Gaussian.jl")
include("Multinomial.jl")
include("Probabilities.jl")
include("mysample.jl")
include("Worker.jl")
include("Center.jl")
include("ExperimentSetting.jl")
include("Evaluation.jl")
BLAS.set_num_threads(1)
end
using JLD
using HDF5
using Distributions
using Clustering
using Hungarian
function evalSyncDistribute(M::Int, T::Int, TT::Int, dataset::Symbol)
assert(M<=nworkers())
## Import Experiment Setting
data,gt,logα,hp = get_exp_setting(dataset)
ndata = length(gt)
## Init workers
indexrange = Array{Range{Int}}(M)
fwks = Array{Future}(M)
@sync for i in 1:M
indexrange[i] = i:M:ndata
# label = rand(1:Int(32/M), length(indexrange[i]))
fwks[i] = @spawnat i+1 Worker(data[:,indexrange[i]],i,M,hp)
end
fccs = Array{Future}(M)
fvcs = Array{Future}(M)
ccs = Array{ClusterCollection}(M)
## Init center
c = Center(M)
## Evaluation
like_data = loghx(data,hp) - lgamma(ndata+exp(logα)) + lgamma(exp(logα))
lll = Array{Float64}(T)
label = Array{Int}(ndata)
maptable = Dict{Int,Int}()
vi = Array{Float64}(T)
runtime = zeros(Float64, T)
bytes_transfer = zeros(Int,T)
times_transfer = zeros(Int,T)
count = Array{Int}(T)
## T iteration of CRP
for iter in 1:T
println("\niter = ", iter)
logα0 = iter==1 ? logα-log(M) : logα
## Center send SuperClusterCollection to workers
println("Center -> Worker Communication")
tic()
@sync for wkid in 1:M
vc = send_cluster_shallow(c,wkid)
fvcs[wkid] = @spawnat wkid+1 vc
## Evaluate Bytes transfer
for sc in vc
bytes_transfer[iter] += (length(sc.ids) + 1 + hp.ds) * 8
end
end
runtime[iter] += toc()
times_transfer[iter] += M
# println(bytes_transfer[iter])
## Local (recv scc -> addother -> crp -> rmother -> send)
println("Local Iteration")
tic()
@sync for wkid in 1:M
fwks[wkid] = @spawnat wkid+1 local_iteration!(fetch(fwks[wkid]),fetch(fvcs[wkid]),hp,logα0)
end
@sync for wkid in 1:M
fccs[wkid] = @spawnat wkid+1 send_cluster(fetch(fwks[wkid]))
end
runtime[iter] += toc()
## Worker send Cluster Collection to Center
println("Worker -> Center Communication")
tic()
@sync for wkid in 1:M
ccs[wkid] = fetch(fccs[wkid])
## Evaluate Bytes transfer
bytes_transfer[iter] += length(ccs[wkid])*(2 + hp.ds)*8
# println(Base.summarysize(ccs[wkid]))
end
runtime[iter] += toc()
times_transfer[iter] += M
# println(bytes_transfer[iter])
println("Center: Merge to SuperClusterCollection")
if TT == 0
println("Progressive Merge")
tic()
for wkid in 1:M
recv_cluster_prog!(c,wkid,ccs[wkid],logα,hp)
end
runtime[iter] += toc()
elseif TT == -1
println("Hungarian Policy")
tic()
for wkid in 1:M
recv_cluster_hung!(c,wkid,ccs[wkid],logα,hp)
end
runtime[iter] += toc()
elseif TT > 0
println("Pooled Merge")
tic()
for wkid in 1:M
# prog is faster in burn-up stage
recv_cluster_prog!(c,wkid,ccs[wkid],logα,hp)
# recv_cluster_pool!(c,wkid,ccs[wkid])
end
runtime[iter] += toc()
## MCMC
tic()
println("MCMC")
calc_table!(c,logα,hp)
pooled_consolidation(c,TT,logα,hp)
runtime[iter] += toc()
else
println("Wrong TT value")
break
end
### Evaluation
## 1. Collect labels and calc vi
for wkid in 1:M
label[indexrange[wkid]] = @fetchfrom wkid+1 send_label_shallow(fetch(fwks[wkid]))
end
empty!(maptable)
for (sid,sc) in c.supercc, subid in sc.ids
maptable[subid] = sid
end
for i in 1:ndata
label[i] = maptable[label[i]]
end
vi[iter] = Clustering.varinfo(maximum(gt),gt,maximum(label),label)
println("\n vi = ", vi[iter])
## 2. Collect models and calc likelihood
lll[iter] = like_data + likelihood_cluster(send_cluster_shallow(c), logα, hp)
println(" loglikelihood = ", lll[iter])
report_cluster_size(c)
count[iter] = length(c.supercc)
end
println()
println("vi = ", vi)
println("loglikelihood = ", lll)
println("runtime = ", runtime)
println("bytes_transfer = ", bytes_transfer)
return lll, vi, runtime, count, bytes_transfer
end
function evalSyncRepeat(R::Int, M::Int, T::Int, TT::Int, dataset::Symbol)
lll = Array{Float64}(T,R)
vi = Array{Float64}(T,R)
runtime = zeros(Float64, T, R)
count = Array{Float64}(T,R)
bytes_transfer = Array{Float64}(T,R)
for r in 1:R
println("Repeat = ", r)
lll[:,r], vi[:,r], runtime[:,r], count[:,r], bytes_transfer[:,r] = evalSyncDistribute(M,T,TT,dataset)
end
lll_mean = mean(lll,2)
vi_mean = mean(vi,2)
runtime_mean = mean(runtime,2)
count_mean = mean(count,2)
cum_runtime_mean = cumsum(vcat(0,runtime_mean))
bytes_transfer_mean = mean(bytes_transfer,2)
lll_std = std(lll,2)
vi_std = std(vi,2)
runtime_std = std(runtime,2)
count_std = std(count,2)
bytes_transfer_std = std(bytes_transfer,2)
println()
println("lll_mean = ", lll_mean)
println("lll_std = ", lll_std)
println("vi_mean = ", vi_mean)
println("vi_std = ", vi_std)
println("runtime_mean = ", runtime_mean)
println("runtime_std = ", runtime_std)
println("cum_runtime_mean = ", cum_runtime_mean)
println("count_mean = ", count_mean)
println("count_std = ", count_std)
println("bytes_transfer_mean = ", bytes_transfer_mean)
println("bytes_transfer_std = ", bytes_transfer_std)
end