-
Notifications
You must be signed in to change notification settings - Fork 1.8k
/
Copy pathrefinedet.cpp
executable file
·1023 lines (852 loc) · 42.9 KB
/
refinedet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <fstream>
#include <iostream>
#include <map>
#include <sstream>
#include <vector>
#include <chrono>
#include "NvInfer.h"
#include "cuda_runtime_api.h"
#include "utils.h"
#include "logging.h"
#include "calibrator.h"
#include "configure.h"
#include <torch/script.h> // One-stop header.
#include "torch/torch.h"
#include "torch/jit.h"
using namespace nvinfer1;
static Logger gLogger;
//Correct the rectangle area to prevent the image from crossing the boundary
void RoiCorrect(const cv::Mat &m, cv::Rect &r)
{
if (r.x < 0) r.x = 0;
if (r.y < 0) r.y = 0;
if(r.x >= m.cols-1) r.x=0;
if(r.y >= m.rows-1) r.y=0;
if(r.width <= 0) r.width = 1;
if(r.height <= 0) r.height = 1;
if(r.x + r.width > m.cols - 1) r.width = m.cols - 1 - r.x;
if(r.y + r.height > m.rows - 1) r.height = m.rows - 1 - r.y;
}
// TensorRT weight files have a simple space delimited format:
// [type] [size] <data x size in hex>
std::map<std::string, Weights> loadWeights(const std::string file) {
std::cout << "Loading weights: " << file << std::endl;
std::map<std::string, Weights> weightMap;
// Open weights file
std::ifstream input(file);
assert(input.is_open() && "Unable to load weight file.");
// Read number of weight blobs
int32_t count;
input >> count;
assert(count > 0 && "Invalid weight map file.");
while (count--)
{
Weights wt{DataType::kFLOAT, nullptr, 0};
uint32_t size;
// Read name and type of blob
std::string name;
input >> name >> std::dec >> size;
wt.type = DataType::kFLOAT;
// Load blob
uint32_t* val = reinterpret_cast<uint32_t*>(malloc(sizeof(val) * size));
for (uint32_t x = 0, y = size; x < y; ++x)
{
input >> std::hex >> val[x];
}
wt.values = val;
wt.count = size;
weightMap[name] = wt;
}
return weightMap;
}
IScaleLayer* addBatchNorm2d(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, std::string lname, float eps) {
float *gamma = (float*)weightMap[lname + ".weight"].values;
float *beta = (float*)weightMap[lname + ".bias"].values;
float *mean = (float*)weightMap[lname + ".running_mean"].values;
float *var = (float*)weightMap[lname + ".running_var"].values;
int len = weightMap[lname + ".running_var"].count;
float *scval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
scval[i] = gamma[i] / sqrt(var[i] + eps);
}
Weights scale{DataType::kFLOAT, scval, len};
float *shval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
shval[i] = beta[i] - mean[i] * gamma[i] / sqrt(var[i] + eps);
}
Weights shift{DataType::kFLOAT, shval, len};
float *pval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
pval[i] = 1.0;
}
Weights power{DataType::kFLOAT, pval, len};
weightMap[lname + ".scale"] = scale;
weightMap[lname + ".shift"] = shift;
weightMap[lname + ".power"] = power;
IScaleLayer* scale_1 = network->addScale(input, ScaleMode::kCHANNEL, shift, scale, power);
assert(scale_1);
return scale_1;
}
//convBnLeaky(network, weightMap, *data, 32, 3, 1, 1, 0);
ILayer* convRelu(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int outch, int ksize, int s, int p,\
int linx, const std::string pre_name = "vgg.", bool b_dilate = false) {
Weights emptywts{DataType::kFLOAT, nullptr, 0};
if (weightMap.count(pre_name + std::to_string(linx) + ".weight") == 0)
std::cout << "no key: " <<pre_name + std::to_string(linx) + ".weight" << std::endl;
if (weightMap.count(pre_name + std::to_string(linx) + ".bias") == 0)
std::cout << "no key: " <<pre_name + std::to_string(linx) + ".bias" << std::endl;
IConvolutionLayer* conv1 = network->addConvolutionNd(input, outch, DimsHW{ksize, ksize}, weightMap[pre_name + std::to_string(linx) + ".weight"], weightMap[pre_name + std::to_string(linx) + ".bias"]);
assert(conv1);
conv1->setStrideNd(DimsHW{s, s});
conv1->setPaddingNd(DimsHW{p, p});
if(true == b_dilate)
{
conv1->setDilation(DimsHW{3, 3});
}
auto lr = network->addActivation(*conv1->getOutput(0), ActivationType::kRELU);
return lr;
}
//convBnLeaky(network, weightMap, *data, 32, 3, 1, 1, 0);
ILayer* convRelu_extras(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int outch, int ksize, int s, int p, const std::string weight_name, const std::string bias_name){
if (weightMap.count(weight_name) == 0)
std::cout << "no key: " <<weight_name << std::endl;
if (weightMap.count(bias_name) == 0)
std::cout << "no key: " <<bias_name << std::endl;
IConvolutionLayer* conv1 = network->addConvolutionNd(input, outch, DimsHW{ksize, ksize}, weightMap[weight_name], weightMap[bias_name]);
assert(conv1);
conv1->setStrideNd(DimsHW{s, s});
conv1->setPaddingNd(DimsHW{p, p});
auto lr = network->addActivation(*conv1->getOutput(0), ActivationType::kRELU);
return lr;
}
//convBnLeaky(network, weightMap, *data, 32, 3, 1, 1, 0);
IConvolutionLayer* convReluconv_tcb0(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int outch, int ksize, int s, int p, int indx_0, int indx_1){
std::string name_w0 = "tcb0." + (std::string)std::to_string(indx_0) + ".weight";
std::string name_b0 = "tcb0." + (std::string)std::to_string(indx_0) + ".bias";
std::string name_w1 = "tcb0." + (std::string)std::to_string(indx_1) + ".weight";
std::string name_b1 = "tcb0." + (std::string)std::to_string(indx_1) + ".bias";
if (weightMap.count(name_w0) == 0)
std::cout << "no key: " <<name_w0 << std::endl;
if (weightMap.count(name_b0) == 0)
std::cout << "no key: " <<name_b0 << std::endl;
if (weightMap.count(name_w1) == 0)
std::cout << "no key: " <<name_w1 << std::endl;
if (weightMap.count(name_b1) == 0)
std::cout << "no key: " <<name_b1 << std::endl;
IConvolutionLayer* conv1 = network->addConvolutionNd(input, outch, DimsHW{ksize, ksize}, weightMap[name_w0], weightMap[name_b0]);
assert(conv1);
conv1->setStrideNd(DimsHW{s, s});
conv1->setPaddingNd(DimsHW{p, p});
auto lr = network->addActivation(*conv1->getOutput(0), ActivationType::kRELU);
IConvolutionLayer* conv2 = network->addConvolutionNd(*lr->getOutput(0), 256, DimsHW{3, 3}, weightMap[name_w1], weightMap[name_b1]);
assert(conv2);
conv2->setStrideNd(DimsHW{1, 1});
conv2->setPaddingNd(DimsHW{1, 1});
return conv2;
}
ILayer* ReluconvRelu_tcb2(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int outch, int ksize, int s, int p, int indx_0){
auto lr = network->addActivation(input, ActivationType::kRELU);
std::string name_w0 = "tcb2." + (std::string)std::to_string(indx_0) + ".weight";
std::string name_b0 = "tcb2." + (std::string)std::to_string(indx_0) + ".bias";
if (weightMap.count(name_w0) == 0)
std::cout << "no key: " <<name_w0 << std::endl;
if (weightMap.count(name_b0) == 0)
std::cout << "no key: " <<name_b0 << std::endl;
IConvolutionLayer* conv1 = network->addConvolutionNd(*lr->getOutput(0), outch, DimsHW{ksize, ksize}, weightMap[name_w0], weightMap[name_b0]);
assert(conv1);
conv1->setStrideNd(DimsHW{s, s});
conv1->setPaddingNd(DimsHW{p, p});
auto lr1 = network->addActivation(*conv1->getOutput(0), ActivationType::kRELU);
return lr1;
}
ILayer* conv_permutation(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int outch, int ksize, int s, int p, const std::string weight_name, const std::string bias_name)
{
if (weightMap.count(weight_name) == 0)
std::cout << "no key: " <<weight_name << std::endl;
if (weightMap.count(bias_name) == 0)
std::cout << "no key: " <<bias_name << std::endl;
IConvolutionLayer* a0 = network->addConvolutionNd(input, outch, DimsHW{ksize, ksize}, weightMap[weight_name], weightMap[bias_name]);
assert(a0);
a0->setStrideNd(DimsHW{s, s});
a0->setPaddingNd(DimsHW{p, p});
auto sfl = network->addShuffle(*a0->getOutput(0));
sfl->setFirstTranspose(Permutation{1, 2, 0});
return sfl;
}
ILayer* cat_4_tensor(INetworkDefinition *network, ILayer*tensor_0, ILayer*tensor_1, ILayer*tensor_2, ILayer*tensor_3)
{
Dims dim_;
dim_.nbDims=1;
dim_.d[0]=-1;
//40 40 12 --->>40*40*12
auto arm_loc_00 = network->addShuffle(*tensor_0->getOutput(0));
assert(arm_loc_00);
arm_loc_00->setReshapeDimensions(dim_);
//20 20 12 --->>20*20*12
auto arm_loc_11 = network->addShuffle(*tensor_1->getOutput(0));
assert(arm_loc_11);
arm_loc_11->setReshapeDimensions(dim_); //Dims2(-1, 1)
//10 10 12 --->>10*10*12
auto arm_loc_22 = network->addShuffle(*tensor_2->getOutput(0));
assert(arm_loc_22);
arm_loc_22->setReshapeDimensions(dim_);
//5 5 12 --->>5*5*12
auto arm_loc_33 = network->addShuffle(*tensor_3->getOutput(0));
assert(arm_loc_33);
arm_loc_33->setReshapeDimensions(dim_);
//
// Dims dim0 = arm_loc_00->getOutput(0)->getDimensions();
// std::cout <<"debug arm_loc_0 dim==" << dim0.d[0] << " " << dim0.d[1] << " " << dim0.d[2] << " " << dim0.d[3] << std::endl;
// Dims dim1 = arm_loc_11->getOutput(0)->getDimensions();
// std::cout <<"debug arm_loc_1 dim==" << dim1.d[0] << " " << dim1.d[1] << " " << dim1.d[2] << " " << dim1.d[3] << std::endl;
// Dims dim2 = arm_loc_22->getOutput(0)->getDimensions();
// std::cout <<"debug arm_loc_2 dim==" << dim2.d[0] << " " << dim2.d[1] << " " << dim2.d[2] << " " << dim2.d[3] << std::endl;
// Dims dim3 = arm_loc_33->getOutput(0)->getDimensions();
// std::cout <<"debug arm_loc_3 dim==" << dim3.d[0] << " " << dim3.d[1] << " " << dim3.d[2] << " " << dim3.d[3] << std::endl;
ITensor* arm_loc_t[] = {arm_loc_00->getOutput(0), arm_loc_11->getOutput(0), arm_loc_22->getOutput(0), arm_loc_33->getOutput(0)};
auto arm_loc = network->addConcatenation(arm_loc_t, 4);
//[25500]
return arm_loc;
}
ILayer* reshapeSoftmax(INetworkDefinition *network, ITensor& input, int ch) {
//The input is one-dimensional[12750]
//reshape[XX,ch]
auto re1 = network->addShuffle(input);
assert(re1);
re1->setReshapeDimensions(Dims3(1, -1, ch)); //[1,6375,2];
// re1->setReshapeDimensions(Dims2(-1, ch)); //[6375,2];
Dims dim0 = re1->getOutput(0)->getDimensions();
std::cout <<"debug re1 dim==" << dim0.d[0] << " " << dim0.d[1] << " " << dim0.d[2] << " " << dim0.d[3] << std::endl;
// return re1;/////////////////////////////////////////
auto sm = network->addSoftMax(*re1->getOutput(0));
sm->setAxes(1<<2);
assert(sm);
//And then reshape one-dimensional again, and it's the same shape as it came in
Dims dim_;
dim_.nbDims=1;
dim_.d[0]=-1;
auto re2 = network->addShuffle(*sm->getOutput(0));
assert(re2);
re2->setReshapeDimensions(dim_);
return re2;
}
IScaleLayer* L2norm(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, const std::string pre_name = "conv4_3_L2Norm.weight")
{
//aa = x.pow(2) ## [1,512,40,40]
const static float pval1[3]{0.0, 1.0, 2.0};
Weights wshift1{DataType::kFLOAT, pval1, 1};
Weights wscale1{DataType::kFLOAT, pval1+1, 1};
Weights wpower1{DataType::kFLOAT, pval1+2, 1};
IScaleLayer* scale1 = network->addScale(
input,
ScaleMode::kUNIFORM,
wshift1,
wscale1,
wpower1);
assert(scale1);
//bb = x.pow(2).sum(dim=1, keepdim=True) ## [1,1,40,40]
IReduceLayer* reduce1 = network->addReduce(*scale1->getOutput(0),
ReduceOperation::kSUM,
1,
true);
assert(reduce1);
//norm = x.pow(2).sum(dim=1, keepdim=True).sqrt()+self.eps # [1,1,40,40]
const static float pval2[3]{0.0, 1.0, 0.5};
Weights wshift2{DataType::kFLOAT, pval2, 1};
Weights wscale2{DataType::kFLOAT, pval2+1, 1};
Weights wpower2{DataType::kFLOAT, pval2+2, 1};
IScaleLayer* scale2 = network->addScale(
*reduce1->getOutput(0),
ScaleMode::kUNIFORM,
wshift2,
wscale2,
wpower2);
assert(scale2);
// x = torch.div(x,norm)
IElementWiseLayer* ew2 = network->addElementWise(input,
*scale2->getOutput(0),
ElementWiseOperation::kDIV);
assert(ew2);
//out = self.weight.unsqueeze(0).unsqueeze(2).unsqueeze(3).expand_as(x) * x
int len = weightMap[pre_name].count;
float* pval3 = reinterpret_cast<float*>(malloc(sizeof(float) * len));
std::fill_n(pval3, len, 1.0);
Weights wpower3{DataType::kFLOAT, pval3, len};
weightMap[pre_name + ".power3"] = wpower3;
float* pval4 = reinterpret_cast<float*>(malloc(sizeof(float) * len));
std::fill_n(pval4, len, 0.0);
Weights wpower4{DataType::kFLOAT, pval4, len};
weightMap[pre_name + ".power4"] = wpower4;
IScaleLayer* scale3 = network->addScale(
*ew2->getOutput(0),
ScaleMode::kCHANNEL,
wpower4,
weightMap[pre_name],
wpower3);
assert(scale3);
return scale3;
}
//convBnLeaky(network, weightMap, *data, 32, 3, 1, 1, 0);
ILayer* convBnLeaky(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int outch, int ksize, int s, int p, int linx) {
Weights emptywts{DataType::kFLOAT, nullptr, 0};
IConvolutionLayer* conv1 = network->addConvolutionNd(input, outch, DimsHW{ksize, ksize}, weightMap["module_list." + std::to_string(linx) + ".Conv2d.weight"], emptywts);
assert(conv1);
conv1->setStrideNd(DimsHW{s, s});
conv1->setPaddingNd(DimsHW{p, p});
IScaleLayer* bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), "module_list." + std::to_string(linx) + ".BatchNorm2d", 1e-5);
auto lr = network->addActivation(*bn1->getOutput(0), ActivationType::kLEAKY_RELU);
lr->setAlpha(0.1);
return lr;
}
// Creat the engine using only the API and not any parser.
ICudaEngine* createEngine(unsigned int maxBatchSize, IBuilder* builder, IBuilderConfig* config, DataType dt) {
INetworkDefinition* network = builder->createNetworkV2(0U);
ITensor* data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{3, INPUT_H, INPUT_W});
assert(data);
std::map<std::string, Weights> weightMap = loadWeights(path_wts);
Weights emptywts{DataType::kFLOAT, nullptr, 0};
DimsHW maxpool_hw = DimsHW(2,2);
auto lr0 = convRelu(network, weightMap, *data, 64, 3, 1, 1, 0);
auto lr1 = convRelu(network, weightMap, *lr0->getOutput(0), 64, 3, 1, 1, 2);
IPoolingLayer* pool1 = network->addPoolingNd(*lr1->getOutput(0), PoolingType::kMAX, DimsHW{2, 2});
assert(pool1);
pool1->setStrideNd(DimsHW{2, 2});
auto lr2 = convRelu(network, weightMap, *pool1->getOutput(0), 128, 3, 1, 1, 5);
auto lr3 = convRelu(network, weightMap, *lr2->getOutput(0), 128, 3, 1, 1, 7);
IPoolingLayer* pool2 = network->addPoolingNd(*lr3->getOutput(0), PoolingType::kMAX, DimsHW{2, 2});
assert(pool2);
pool2->setStrideNd(DimsHW{2, 2});
auto lr4 = convRelu(network, weightMap, *pool2->getOutput(0), 256, 3, 1, 1, 10);
auto lr5 = convRelu(network, weightMap, *lr4->getOutput(0), 256, 3, 1, 1, 12);
auto lr6 = convRelu(network, weightMap, *lr5->getOutput(0), 256, 3, 1, 1, 14);
IPoolingLayer* pool3 = network->addPoolingNd(*lr6->getOutput(0), PoolingType::kMAX, DimsHW{2, 2});
assert(pool3);
pool3->setStrideNd(DimsHW{2, 2});
auto lr7 = convRelu(network, weightMap, *pool3->getOutput(0), 512, 3, 1, 1, 17);
auto lr8 = convRelu(network, weightMap, *lr7->getOutput(0), 512, 3, 1, 1, 19);
auto lr9 = convRelu(network, weightMap, *lr8->getOutput(0), 512, 3, 1, 1, 21);
IPoolingLayer* pool4 = network->addPoolingNd(*lr9->getOutput(0), PoolingType::kMAX, DimsHW{2, 2});
assert(pool4);
pool4->setStrideNd(DimsHW{2, 2});
auto lr24 = convRelu(network, weightMap, *pool4->getOutput(0), 512, 3, 1, 1, 24);
auto lr26 = convRelu(network, weightMap, *lr24->getOutput(0), 512, 3, 1, 1, 26);
auto lr28 = convRelu(network, weightMap, *lr26->getOutput(0), 512, 3, 1, 1, 28);
IPoolingLayer* pool5 = network->addPoolingNd(*lr28->getOutput(0), PoolingType::kMAX, DimsHW{2, 2});
assert(pool5);
pool5->setStrideNd(DimsHW{2, 2});
auto lr31 = convRelu(network, weightMap, *pool5->getOutput(0), 1024, 3, 1, 3, 31,"vgg.",true);
//s_0
auto out_conv4_3_L2Norm = L2norm(network, weightMap, *lr9->getOutput(0),"conv4_3_L2Norm.weight");
//s_1
auto out_conv5_3_L2Norm = L2norm(network, weightMap, *lr28->getOutput(0),"conv5_3_L2Norm.weight");
//s_2
auto lr33 = convRelu(network, weightMap, *lr31->getOutput(0), 1024, 1, 1, 0, 33);
auto extras0 = convRelu_extras(network, weightMap, *lr33->getOutput(0), 256, 1, 1, 0, "extras.0.weight", "extras.0.bias");
//s_3
auto extras1 = convRelu_extras(network, weightMap, *extras0->getOutput(0), 512, 3, 2, 1, "extras.1.weight", "extras.1.bias");
auto arm_loc_0 = conv_permutation(network, weightMap, *out_conv4_3_L2Norm->getOutput(0), 12, 3, 1, 1, "arm_loc.0.weight", "arm_loc.0.bias");
auto arm_loc_1 = conv_permutation(network, weightMap, *out_conv5_3_L2Norm->getOutput(0), 12, 3, 1, 1, "arm_loc.1.weight", "arm_loc.1.bias");
auto arm_loc_2 = conv_permutation(network, weightMap, *lr33->getOutput(0), 12, 3, 1, 1, "arm_loc.2.weight", "arm_loc.2.bias");
auto arm_loc_3 = conv_permutation(network, weightMap, *extras1->getOutput(0), 12, 3, 1, 1, "arm_loc.3.weight", "arm_loc.3.bias");
auto arm_conf_0 = conv_permutation(network, weightMap, *out_conv4_3_L2Norm->getOutput(0), 6, 3, 1, 1, "arm_conf.0.weight", "arm_conf.0.bias");
auto arm_conf_1 = conv_permutation(network, weightMap, *out_conv5_3_L2Norm->getOutput(0), 6, 3, 1, 1, "arm_conf.1.weight", "arm_conf.1.bias");
auto arm_conf_2 = conv_permutation(network, weightMap, *lr33->getOutput(0), 6, 3, 1, 1, "arm_conf.2.weight", "arm_conf.2.bias");
auto arm_conf_3 = conv_permutation(network, weightMap, *extras1->getOutput(0), 6, 3, 1, 1, "arm_conf.3.weight", "arm_conf.3.bias");
auto arm_loc = cat_4_tensor(network, arm_loc_0, arm_loc_1, arm_loc_2, arm_loc_3);
auto arm_conf = cat_4_tensor(network, arm_conf_0, arm_conf_1, arm_conf_2, arm_conf_3);
auto ss_0 = convReluconv_tcb0(network, weightMap, *extras1->getOutput(0), 256, 3, 1, 1, 9, 11);
auto ss_00 = ReluconvRelu_tcb2(network, weightMap, *ss_0->getOutput(0), 256, 3, 1, 1, 10);
auto ss_1 = convReluconv_tcb0(network, weightMap, *lr33->getOutput(0), 256, 3, 1, 1, 6, 8);
IDeconvolutionLayer* tcb1_2 = network->addDeconvolutionNd(*ss_00->getOutput(0), 256, DimsHW{2, 2}, weightMap["tcb1.2.weight"], weightMap["tcb1.2.bias"]); //nn.ConvTranspose2d(256, 256, 2, 2)
tcb1_2->setStrideNd(DimsHW{2, 2});
assert(tcb1_2);
auto ss_1_add = network->addElementWise(*ss_1->getOutput(0), *tcb1_2->getOutput(0), ElementWiseOperation::kSUM);
auto ss_11 = ReluconvRelu_tcb2(network, weightMap, *ss_1_add->getOutput(0), 256, 3, 1, 1, 7);
auto ss_2 = convReluconv_tcb0(network, weightMap, *out_conv5_3_L2Norm->getOutput(0), 256, 3, 1, 1, 3, 5);
IDeconvolutionLayer* tcb1_1 = network->addDeconvolutionNd(*ss_11->getOutput(0), 256, DimsHW{2, 2}, weightMap["tcb1.1.weight"], weightMap["tcb1.1.bias"]); //nn.ConvTranspose2d(256, 256, 2, 2)
tcb1_1->setStrideNd(DimsHW{2, 2});
assert(tcb1_1);
auto ss_2_add = network->addElementWise(*ss_2->getOutput(0), *tcb1_1->getOutput(0), ElementWiseOperation::kSUM);
auto ss_22 = ReluconvRelu_tcb2(network, weightMap, *ss_2_add->getOutput(0), 256, 3, 1, 1, 4);
auto ss_3 = convReluconv_tcb0(network, weightMap, *out_conv4_3_L2Norm->getOutput(0), 256, 3, 1, 1, 0, 2);
IDeconvolutionLayer* tcb1_0 = network->addDeconvolutionNd(*ss_22->getOutput(0), 256, DimsHW{2, 2}, weightMap["tcb1.0.weight"], weightMap["tcb1.0.bias"]); //nn.ConvTranspose2d(256, 256, 2, 2)
tcb1_0->setStrideNd(DimsHW{2, 2});
assert(tcb1_0);
auto ss_3_add = network->addElementWise(*ss_3->getOutput(0), *tcb1_0->getOutput(0), ElementWiseOperation::kSUM);
auto ss_33 = ReluconvRelu_tcb2(network, weightMap, *ss_3_add->getOutput(0), 256, 3, 1, 1, 1);
auto odm_loc_0 = conv_permutation(network, weightMap, *ss_33->getOutput(0), 12, 3, 1, 1, "odm_loc.0.weight", "odm_loc.0.bias");
auto odm_loc_1 = conv_permutation(network, weightMap, *ss_22->getOutput(0), 12, 3, 1, 1, "odm_loc.1.weight", "odm_loc.1.bias");
auto odm_loc_2 = conv_permutation(network, weightMap, *ss_11->getOutput(0), 12, 3, 1, 1, "odm_loc.2.weight", "odm_loc.2.bias");
auto odm_loc_3 = conv_permutation(network, weightMap, *ss_00->getOutput(0), 12, 3, 1, 1, "odm_loc.3.weight", "odm_loc.3.bias");
auto odm_conf_0 = conv_permutation(network, weightMap, *ss_33->getOutput(0), 3 * num_class, 3, 1, 1, "odm_conf.0.weight", "odm_conf.0.bias");
auto odm_conf_1 = conv_permutation(network, weightMap, *ss_22->getOutput(0), 3 * num_class, 3, 1, 1, "odm_conf.1.weight", "odm_conf.1.bias");
auto odm_conf_2 = conv_permutation(network, weightMap, *ss_11->getOutput(0), 3 * num_class, 3, 1, 1, "odm_conf.2.weight", "odm_conf.2.bias");
auto odm_conf_3 = conv_permutation(network, weightMap, *ss_00->getOutput(0), 3 * num_class, 3, 1, 1, "odm_conf.3.weight", "odm_conf.3.bias");
auto odm_loc = cat_4_tensor(network, odm_loc_0, odm_loc_1, odm_loc_2, odm_loc_3);
auto odm_conf = cat_4_tensor(network, odm_conf_0, odm_conf_1, odm_conf_2, odm_conf_3);
//25500
Dims dim = arm_loc->getOutput(0)->getDimensions();
std::cout <<"debug arm_loc dim==" << dim.d[0] << " " << dim.d[1] << " " << dim.d[2] << " " << dim.d[3] << std::endl;
arm_loc->getOutput(0)->setName(OUTPUT_BLOB_NAME_arm_loc);
network->markOutput(*arm_loc->getOutput(0));
auto arm_conf_111 = reshapeSoftmax(network, *arm_conf->getOutput(0), 2);
//12750
Dims dim2 = arm_conf_111->getOutput(0)->getDimensions();
std::cout <<"debug arm_conf dim==" << dim2.d[0] << " " << dim2.d[1] << " " << dim2.d[2] << " " << dim2.d[3] << std::endl;
arm_conf_111->getOutput(0)->setName(OUTPUT_BLOB_NAME_arm_conf);
network->markOutput(*arm_conf_111->getOutput(0));
//25500
Dims dim3 = odm_loc->getOutput(0)->getDimensions();
std::cout <<"debug odm_loc dim==" << dim3.d[0] << " " << dim3.d[1] << " " << dim3.d[2] << " " << dim3.d[3] << std::endl;
odm_loc->getOutput(0)->setName(OUTPUT_BLOB_NAME_odm_loc);
network->markOutput(*odm_loc->getOutput(0));
//159375
Dims dim4 = odm_conf->getOutput(0)->getDimensions();
odm_conf = reshapeSoftmax(network, *odm_conf->getOutput(0), 25);
std::cout <<"debug odm_conf dim==" << dim4.d[0] << " " << dim4.d[1] << " " << dim4.d[2] << " " << dim4.d[3] << std::endl;
odm_conf->getOutput(0)->setName(OUTPUT_BLOB_NAME_odm_conf);
network->markOutput(*odm_conf->getOutput(0));
builder->setMaxBatchSize(maxBatchSize);
config->setMaxWorkspaceSize(16 * (1 << 20)); // 16MB
#if defined(USE_FP16)
config->setFlag(BuilderFlag::kFP16);
#elif defined(USE_INT8)
std::cout << "Your platform support int8: " << (builder->platformHasFastInt8() ? "true" : "false") << std::endl;
assert(builder->platformHasFastInt8());
config->setFlag(BuilderFlag::kINT8);
Int8EntropyCalibrator2 *calibrator = new Int8EntropyCalibrator2(1, INPUT_W, INPUT_H, "./coco_calib/", "int8calib.table", INPUT_BLOB_NAME);
config->setInt8Calibrator(calibrator);
#endif
std::cout << "Building engine, please wait for a while..." << std::endl;
ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);
std::cout << "Build engine successfully!" << std::endl;
// Don't need the network any more
network->destroy();
// Release host memory
for (auto& mem : weightMap)
{
free((void*) (mem.second.values));
}
return engine;
}
void APIToModel(unsigned int maxBatchSize, IHostMemory** modelStream) {
// Create builder
IBuilder* builder = createInferBuilder(gLogger);
IBuilderConfig* config = builder->createBuilderConfig();
// Create model to populate the network, then set the outputs and create an engine
ICudaEngine* engine = createEngine(maxBatchSize, builder, config, DataType::kFLOAT);
assert(engine != nullptr);
// Serialize the engine
(*modelStream) = engine->serialize();
// Close everything down
engine->destroy();
builder->destroy();
}
torch::Tensor PriorBox()
{
std::vector<float> mean;
std::vector<int> feature_maps = {40,20,10,5};
int image_size = 320;
std::vector<int> steps = {8,16,32,64};
std::vector<int> min_sizes = {32,64,128,256};
std::vector<int> aspect_ratios = {2,2,2,2};
for(int k=0;k<feature_maps.size();k++)
{
int f = feature_maps[k];
for(int i=0;i<f;i++)
{
for(int j=0;j<f;j++)
{
float f_k = image_size * 1.0 / steps[k];
float cx = (j + 0.5) / f_k;
float cy = (i + 0.5) / f_k;
float s_k = min_sizes[k] * 1.0 / image_size;
mean.push_back(cx);
mean.push_back(cy);
mean.push_back(s_k);
mean.push_back(s_k);
float ar = aspect_ratios[k];
mean.push_back(cx);
mean.push_back(cy);
mean.push_back(s_k * 1.0 * sqrt(ar));
mean.push_back(s_k * 1.0 / sqrt(ar));
mean.push_back(cx);
mean.push_back(cy);
mean.push_back(s_k * 1.0 / sqrt(ar));
mean.push_back(s_k * 1.0 * sqrt(ar));
}
}
}
torch::Tensor m_prior;
int m_prior_size = 6375;
m_prior = torch::from_blob(mean.data(),{m_prior_size,4}).cuda();
m_prior = m_prior.clamp(0,1);
// std::cout<<m_prior<<std::endl;
return m_prior.toType(torch::kFloat64);
}
torch::Tensor decode(const torch::Tensor _loc,torch::Tensor _prior,bool b_form_pt = false)
{
std::vector<float> variance({0.1,0.2});
torch::Tensor top_2 = torch::tensor({0,1}).cuda().to(torch::kLong);
torch::Tensor bottom_2 = torch::tensor({2,3}).cuda().to(torch::kLong);
auto c1 = _prior.index_select(1,top_2)+_loc.index_select(1,top_2).mul(variance[0])*_prior.index_select(1,bottom_2);
auto c2 = _prior.index_select(1,bottom_2)*torch::exp(_loc.index_select(1,bottom_2)*variance[1]);
auto _retv = torch::cat({c1,c2},1);
if(b_form_pt)
{
auto c3 = _retv.index_select(1,top_2)-_retv.index_select(1,bottom_2).div(2);
auto c4 = c3 + _retv.index_select(1,bottom_2);
return torch::cat({c3,c4},1);
} else
{
return _retv;
}
}
torch::Tensor center(torch::Tensor retv)
{
auto c1 = retv.select(1,0).unsqueeze(1);
auto c2 = retv.select(1,1).unsqueeze(1);
auto c3 = retv.select(1,2).unsqueeze(1);
auto c4 = retv.select(1,3).unsqueeze(1);
auto _retv = torch::cat({(c1+c3).div(2),(c2+c4).div(2),c3-c1,c4-c2},1);
return _retv;
}
bool nms(const torch::Tensor& boxes, const torch::Tensor& scores, torch::Tensor &keep, int &count,float overlap, int top_k)
{
count =0;
keep = torch::zeros({scores.size(0)}).to(torch::kLong).to(scores.device());
if(0 == boxes.numel())
{
return false;
}
torch::Tensor x1 = boxes.select(1,0).clone();
torch::Tensor y1 = boxes.select(1,1).clone();
torch::Tensor x2 = boxes.select(1,2).clone();
torch::Tensor y2 = boxes.select(1,3).clone();
torch::Tensor area = (x2-x1)*(y2-y1);
// std::cout<<area<<std::endl;
std::tuple<torch::Tensor,torch::Tensor> sort_ret = torch::sort(scores.unsqueeze(1), 0, 0);
torch::Tensor v = std::get<0>(sort_ret).squeeze(1).to(scores.device());
torch::Tensor idx = std::get<1>(sort_ret).squeeze(1).to(scores.device());
int num_ = idx.size(0);
if(num_ > top_k) //python:idx = idx[-top_k:]
{
idx = idx.slice(0,num_-top_k,num_).clone();
}
torch::Tensor xx1,yy1,xx2,yy2,w,h;
while(idx.numel() > 0)
{
auto i = idx[-1];
keep[count] = i;
count += 1;
if(1 == idx.size(0))
{
break;
}
idx = idx.slice(0,0,idx.size(0)-1).clone();
xx1 = x1.index_select(0,idx);
yy1 = y1.index_select(0,idx);
xx2 = x2.index_select(0,idx);
yy2 = y2.index_select(0,idx);
xx1 = xx1.clamp(x1[i].item().toFloat(),INT_MAX*1.0);
yy1 = yy1.clamp(y1[i].item().toFloat(),INT_MAX*1.0);
xx2 = xx2.clamp(INT_MIN*1.0,x2[i].item().toFloat());
yy2 = yy2.clamp(INT_MIN*1.0,y2[i].item().toFloat());
w = xx2 - xx1;
h = yy2 - yy1;
w = w.clamp(0,INT_MAX);
h = h.clamp(0,INT_MAX);
torch::Tensor inter = w * h;
torch::Tensor rem_areas = area.index_select(0,idx);
torch::Tensor union_ = (rem_areas - inter) + area[i];
torch::Tensor Iou = inter * 1.0 / union_;
torch::Tensor index_small = Iou < overlap;
auto mask_idx = torch::nonzero(index_small).squeeze();
idx = idx.index_select(0,mask_idx);//pthon: idx = idx[IoU.le(overlap)]
}
return true;
}
void doInference(IExecutionContext& context, void* buffers[], cudaStream_t &stream, float* input, std::vector<std::vector<float>> &detections) {
auto start_infer = std::chrono::system_clock::now();
detections.clear();
int batchSize = 1;
const ICudaEngine& engine = context.getEngine();
// Pointers to input and output device buffers to pass to engine.
// Engine requires exactly IEngine::getNbBindings() number of buffers.
// std::cout<<"engine.getNbBindings()==="<<engine.getNbBindings()<<std::endl;
assert(engine.getNbBindings() == 5);
// In order to bind the buffers, we need to know the names of the input and output tensors.
// Note that indices are guaranteed to be less than IEngine::getNbBindings()
const int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME);
const int outputIndex_arm_loc = engine.getBindingIndex(OUTPUT_BLOB_NAME_arm_loc);
const int outputIndex_arm_conf = engine.getBindingIndex(OUTPUT_BLOB_NAME_arm_conf);
const int outputIndex_odm_loc = engine.getBindingIndex(OUTPUT_BLOB_NAME_odm_loc);
const int outputIndex_odm_conf = engine.getBindingIndex(OUTPUT_BLOB_NAME_odm_conf);
// const int outputIndex2 = engine.getBindingIndex("prob2");
// printf("inputIndex=%d\n",inputIndex);
// printf("outputIndex_arm_loc=%d\n",outputIndex_arm_loc);
// printf("outputIndex_arm_conf=%d\n",outputIndex_arm_conf);
// printf("outputIndex_odm_loc=%d\n",outputIndex_odm_loc);
// printf("outputIndex_odm_conf=%d\n",outputIndex_odm_conf);
// DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
CUDA_CHECK(cudaMemcpyAsync(buffers[inputIndex], input, batchSize * 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream));
context.enqueue(batchSize, buffers, stream, nullptr);
cudaDeviceSynchronize();
auto end_infer = std::chrono::system_clock::now();
double during_time = std::chrono::duration_cast<std::chrono::milliseconds>(end_infer - start_infer).count();
std::cout <<"time consume context.enqueue===" << during_time << "ms" << std::endl;
auto start_houchuli = std::chrono::system_clock::now();
int m_prior_size = 6375;
torch::Tensor m_prior = PriorBox();
torch::Tensor arm_loc = torch::from_blob(buffers[outputIndex_arm_loc],{m_prior_size,4}).cuda().toType(torch::kFloat64).unsqueeze(0);
torch::Tensor arm_conf = torch::from_blob(buffers[outputIndex_arm_conf],{m_prior_size,2}).cuda().toType(torch::kFloat64).unsqueeze(0);
torch::Tensor odm_loc = torch::from_blob(buffers[outputIndex_odm_loc],{m_prior_size,4}).cuda().toType(torch::kFloat64).unsqueeze(0);
torch::Tensor odm_conf = torch::from_blob(buffers[outputIndex_odm_conf],{m_prior_size,25}).cuda().toType(torch::kFloat64).unsqueeze(0);
float obj_threshed = 0.01;
torch::Tensor arm_object_conf = arm_conf.squeeze(0).select(1,1);
torch::Tensor object_index = arm_object_conf > obj_threshed;
object_index=object_index.unsqueeze(1);
torch::Tensor object_index_1 = object_index.expand_as(odm_conf.squeeze(0)).toType(torch::kFloat64);
auto filter_odm_conf = odm_conf.squeeze(0).toType(torch::kFloat64) * object_index_1;
torch::Tensor conf_preds_ = filter_odm_conf.clone().toType(torch::kFloat64);
torch::Tensor conf_preds = conf_preds_.transpose(1,0).toType(torch::kFloat64);
torch::Tensor default_m = decode(arm_loc[0],m_prior);
// default_m = center(default_m);
bool b_form_pt = true;
torch::Tensor decode_boxes_m = decode(odm_loc[0],default_m,b_form_pt);//6375,4
float conf_thresh = 0.01;
float mask_thresh = 0.01;
torch::Tensor result_out;
for(int i=1;i<25;i++)
{
torch::Tensor c_mask_m = conf_preds[i] > mask_thresh;
torch::Tensor nonzero_index = torch::nonzero(c_mask_m);
torch::Tensor score_m = torch::index_select(conf_preds[i],0,nonzero_index.squeeze(1));
torch::Tensor boxes_m = torch::index_select(decode_boxes_m,0,nonzero_index.squeeze(1));
torch::Tensor keep;
int count = 0;
float overlap = 0.45;
int top_k=1000;
nms(boxes_m, score_m, keep, count, overlap, top_k);
if(0 == count) { continue; }
keep = keep.slice(0,0,count).clone();
torch::Tensor score_my = score_m.index_select(0,keep);
torch::Tensor boxes_my = boxes_m.index_select(0,keep);
if(score_my[0].item().toFloat() < conf_thresh)
{
continue;
}
// boxes_my.select(1,0).mul_(width);
// boxes_my.select(1,1).mul_(height);
// boxes_my.select(1,2).mul_(width);
// boxes_my.select(1,3).mul_(height);
torch::Tensor label_tensor = torch::full_like(score_my.unsqueeze(1),i);
torch::Tensor result_ = torch::cat({boxes_my.toType(torch::kFloat64),score_my.unsqueeze(1).toType(torch::kFloat64),label_tensor.toType(torch::kFloat64)},1);
if(0 == result_out.numel())
{
result_out = result_.clone();
}else
{
result_out = torch::cat({result_out,result_},0);//Splicing by line
}
}
if(0 == result_out.numel()) { std::cout<<"libtorch refinedet obj_small: nothing detect!"<<std::endl; return ;}
result_out =result_out.cpu();
// x1,y1,x2,y2,score,id
auto result_data = result_out.accessor<double, 2>();
for(int i=0;i<result_data.size(0);i++)
{
float score = result_data[i][4];
float x1 = result_data[i][0];
float y1 = result_data[i][1];
float x2 = result_data[i][2];
float y2 = result_data[i][3];
int id_label = result_data[i][5];
std::vector<float> v_detections;
v_detections.push_back(0); //image_id
v_detections.push_back(id_label); //label
v_detections.push_back(score); //score
v_detections.push_back(x1); //xmin
v_detections.push_back(y1); //ymin
v_detections.push_back(x2); //xmax
v_detections.push_back(y2); //ymax
detections.push_back(v_detections);
}
cudaDeviceSynchronize();
auto end_houchuli = std::chrono::system_clock::now();
double during_time_houchuli = std::chrono::duration_cast<std::chrono::milliseconds>(end_houchuli - start_houchuli).count();
std::cout <<"time consume houchuli===" << during_time_houchuli << "ms" << std::endl;
}
void base_transform(const cv::Mat &m_src,float *data)
{
cv::Mat image;
cv::resize(m_src,image,cv::Size(INPUT_W,INPUT_H));
if(1 == image.channels()) { cv::cvtColor(image,image,CV_GRAY2BGR); }
for(int i=0;i<INPUT_H;i++)
{
uchar* img_data = image.ptr<uchar>(i); //Get the first address of the row pointer
for(int j=0;j<INPUT_W;j++)
{
int offset = i * INPUT_H + j;
data[offset] = (float)(img_data[j*3 + 2] * 1.0 - 123.0);
data[offset + INPUT_H * INPUT_W] = (float)(img_data[j*3 + 1] * 1.0 - 117.0);
data[offset + 2 * INPUT_H * INPUT_W] = (float)(img_data[j*3 + 0] * 1.0 - 104.0);
}
}
}
int main(int argc, char** argv) {
cudaSetDevice(DEVICE);
// create a model using the API directly and serialize it to a stream
char *trtModelStream{nullptr};
size_t size{0};
#ifdef SERIALIZE
IHostMemory* modelStream{nullptr};
APIToModel(1, &modelStream);
assert(modelStream != nullptr);
std::ofstream p(path_save_engine, std::ios::binary);
if (!p) {
std::cerr << "could not open plan output file" << std::endl;
return -1;
}
p.write(reinterpret_cast<const char*>(modelStream->data()), modelStream->size());
modelStream->destroy();
return 0;
#elif defined INFER
std::ifstream file(path_engine, std::ios::binary);
if (file.good()) {
file.seekg(0, file.end);
size = file.tellg();
file.seekg(0, file.beg);
trtModelStream = new char[size];
assert(trtModelStream);
file.read(trtModelStream, size);
file.close();
}
#else
std::cerr << "arguments not right!" << std::endl;
std::cerr << "configure.h should difine SERIALIZE INFER" << std::endl;
std::cerr << "please check!" << std::endl;
return -1;
#endif
std::vector<std::string> file_names;
if (read_files_in_dir(p_dir_name, file_names) < 0) {
std::cout << "read_files_in_dir failed." << std::endl;
return -1;
}
// prepare input data ---------------------------
float data[3 * INPUT_H * INPUT_W];
IRuntime* runtime = createInferRuntime(gLogger); //400M
assert(runtime != nullptr);
ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size); //777M
assert(engine != nullptr);
IExecutionContext* context = engine->createExecutionContext(); //971M
assert(context != nullptr);
delete[] trtModelStream;
const int batchSize = 1;
const int inputIndex=0;
const int outputIndex_arm_loc=1;
const int outputIndex_arm_conf=3;
const int outputIndex_odm_loc=2;
const int outputIndex_odm_conf=4;
//Initialize cuda memory: input and 4 output memory
void* buffers[5];
// Create GPU buffers on device
CUDA_CHECK(cudaMalloc(&buffers[0], batchSize * 3 * INPUT_H * INPUT_W * sizeof(float)));
const int OUTPUT_SIZE_arm_loc = 25500; //40*40*12 + 20*20*12 + 10*10*12 + 5*5*12 = 25500 (Fixed value)
CUDA_CHECK(cudaMalloc(&buffers[outputIndex_arm_loc], batchSize * OUTPUT_SIZE_arm_loc * sizeof(float)));
const int OUTPUT_SIZE_arm_conf = 12750; //40*40*6 + 20*20*6 + 10*10*6 + 5*5*6 = 12750 (Fixed value)
CUDA_CHECK(cudaMalloc(&buffers[outputIndex_arm_conf], batchSize * OUTPUT_SIZE_arm_conf * sizeof(float)));
const int OUTPUT_SIZE_odm_loc = 25500; //40*40*12 + 20*20*12 + 10*10*12 + 5*5*12 = 25500 (Fixed value)
CUDA_CHECK(cudaMalloc(&buffers[outputIndex_odm_loc], batchSize * OUTPUT_SIZE_odm_loc * sizeof(float)));
const int OUTPUT_SIZE_odm_conf = 159375; //40*40*(num_class*3) + 20*20**(num_class*3) + 10*10**(num_class*3) + 5*5**(num_class*3) //here num_class=25// =159375
CUDA_CHECK(cudaMalloc(&buffers[outputIndex_odm_conf], batchSize * OUTPUT_SIZE_odm_conf * sizeof(float)));
// Create stream
cudaStream_t stream;
CUDA_CHECK(cudaStreamCreate(&stream));
int fcount = 0;
auto t_0 = std::chrono::steady_clock::now();
for (auto f: file_names) {
fcount++;
std::cout << "\n" << fcount << " " << f << std::endl;
std::cout << std::string(p_dir_name) + "/" + f << std::endl;
auto start_read = std::chrono::system_clock::now();
cv::Mat img = cv::imread(std::string(p_dir_name) + "/" + f);
cudaDeviceSynchronize();
auto end_read = std::chrono::system_clock::now();
double during_time_read = std::chrono::duration_cast<std::chrono::milliseconds>(end_read - start_read).count();
std::cout <<"time consume during_time_read===" << during_time_read << "ms" << std::endl;
if (img.empty()) continue;
auto start_yuchuli = std::chrono::system_clock::now();
base_transform(img,data);
cudaDeviceSynchronize();
auto end_yuchuli = std::chrono::system_clock::now();
double during_time_yuchuli = std::chrono::duration_cast<std::chrono::milliseconds>(end_yuchuli - start_yuchuli).count();
std::cout <<"time consume base_transform===" << during_time_yuchuli << "ms" << std::endl;
auto start_doInfer = std::chrono::system_clock::now();
std::vector<std::vector<float>> detections;
doInference(*context, buffers, stream, data, detections);
cudaDeviceSynchronize();
auto end_doInfer = std::chrono::system_clock::now();
double during_doinfer = std::chrono::duration_cast<std::chrono::milliseconds>(end_doInfer - start_doInfer).count();
std::cout <<"time consume doInference===" << during_doinfer << "ms" << std::endl;
/* Print the detection results. */
for (size_t i = 0; i < detections.size(); ++i)
{
const std::vector<float> &d = detections[i];
CHECK_EQ(d.size(), 7);
const float score = d[2];
int label = int(d[1]);
if (label >= num_class || label < 0)
{
std::cout << "label_Error!" << std::endl;
continue;
}
if(score < TH)
{
continue;
}
cv::Rect r;
r.x = d[3] * img.cols;
r.y = d[4] * img.rows;
r.width = d[5] * img.cols - r.x;
r.height = d[6] * img.rows - r.y;
RoiCorrect(img, r);
if(T_show)
{
cv::rectangle(img,r,cv::Scalar(255,0,0),2);
}
if (T_show == 0)
{
std::string name_1 = f.substr(0,f.size()-4);
std::string path_txt = save_path_txt + name_1 + ".txt";
std::ofstream fout(path_txt);
fout << label_map[label] << " " << score << " " << r.x << " " << r.y << " " << r.x + r.width
<< " " << r.y + r.height << std::endl; //使用自己的label
}
}
if(T_show)
{
cv::namedWindow("show",0);
cv::imshow("show",img);
cv::waitKey(0);
}
}