-
Notifications
You must be signed in to change notification settings - Fork 1.8k
/
lenet.py
190 lines (146 loc) · 5.86 KB
/
lenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import argparse
import os
import struct
import sys
import numpy as np
import pycuda.autoinit
import pycuda.driver as cuda
import tensorrt as trt
INPUT_H = 32
INPUT_W = 32
OUTPUT_SIZE = 10
INPUT_BLOB_NAME = "data"
OUTPUT_BLOB_NAME = "prob"
weight_path = "./lenet5.wts"
engine_path = "./lenet5.engine"
gLogger = trt.Logger(trt.Logger.INFO)
def load_weights(file):
print(f"Loading weights: {file}")
assert os.path.exists(file), 'Unable to load weight file.'
weight_map = {}
with open(file, "r") as f:
lines = [line.strip() for line in f]
count = int(lines[0])
assert count == len(lines) - 1
for i in range(1, count + 1):
splits = lines[i].split(" ")
name = splits[0]
cur_count = int(splits[1])
assert cur_count + 2 == len(splits)
values = []
for j in range(2, len(splits)):
# hex string to bytes to float
values.append(struct.unpack(">f", bytes.fromhex(splits[j])))
weight_map[name] = np.array(values, dtype=np.float32)
return weight_map
def createLenetEngine(maxBatchSize, builder, config, dt):
weight_map = load_weights(weight_path)
network = builder.create_network()
data = network.add_input(INPUT_BLOB_NAME, dt, (1, INPUT_H, INPUT_W))
assert data
conv1 = network.add_convolution(input=data,
num_output_maps=6,
kernel_shape=(5, 5),
kernel=weight_map["conv1.weight"],
bias=weight_map["conv1.bias"])
assert conv1
conv1.stride = (1, 1)
relu1 = network.add_activation(conv1.get_output(0),
type=trt.ActivationType.RELU)
assert relu1
pool1 = network.add_pooling(input=relu1.get_output(0),
window_size=trt.DimsHW(2, 2),
type=trt.PoolingType.AVERAGE)
assert pool1
pool1.stride = (2, 2)
conv2 = network.add_convolution(pool1.get_output(0), 16, trt.DimsHW(5, 5),
weight_map["conv2.weight"],
weight_map["conv2.bias"])
assert conv2
conv2.stride = (1, 1)
relu2 = network.add_activation(conv2.get_output(0),
type=trt.ActivationType.RELU)
assert relu2
pool2 = network.add_pooling(input=relu2.get_output(0),
window_size=trt.DimsHW(2, 2),
type=trt.PoolingType.AVERAGE)
assert pool2
pool2.stride = (2, 2)
fc1 = network.add_fully_connected(input=pool2.get_output(0),
num_outputs=120,
kernel=weight_map['fc1.weight'],
bias=weight_map['fc1.bias'])
assert fc1
relu3 = network.add_activation(fc1.get_output(0),
type=trt.ActivationType.RELU)
assert relu3
fc2 = network.add_fully_connected(input=relu3.get_output(0),
num_outputs=84,
kernel=weight_map['fc2.weight'],
bias=weight_map['fc2.bias'])
assert fc2
relu4 = network.add_activation(fc2.get_output(0),
type=trt.ActivationType.RELU)
assert relu4
fc3 = network.add_fully_connected(input=relu4.get_output(0),
num_outputs=OUTPUT_SIZE,
kernel=weight_map['fc3.weight'],
bias=weight_map['fc3.bias'])
assert fc3
prob = network.add_softmax(fc3.get_output(0))
assert prob
prob.get_output(0).name = OUTPUT_BLOB_NAME
network.mark_output(prob.get_output(0))
# Build engine
builder.max_batch_size = maxBatchSize
builder.max_workspace_size = 1 << 20
engine = builder.build_engine(network, config)
del network
del weight_map
return engine
def APIToModel(maxBatchSize):
builder = trt.Builder(gLogger)
config = builder.create_builder_config()
engine = createLenetEngine(maxBatchSize, builder, config, trt.float32)
assert engine
with open(engine_path, "wb") as f:
f.write(engine.serialize())
del engine
del builder
def doInference(context, host_in, host_out, batchSize):
engine = context.engine
assert engine.num_bindings == 2
devide_in = cuda.mem_alloc(host_in.nbytes)
devide_out = cuda.mem_alloc(host_out.nbytes)
bindings = [int(devide_in), int(devide_out)]
stream = cuda.Stream()
cuda.memcpy_htod_async(devide_in, host_in, stream)
context.execute_async(bindings=bindings, stream_handle=stream.handle)
cuda.memcpy_dtoh_async(host_out, devide_out, stream)
stream.synchronize()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("-s", action='store_true')
parser.add_argument("-d", action='store_true')
args = parser.parse_args()
if not (args.s ^ args.d):
print("arguments not right!")
print("python lenet.py -s # serialize model to plan file")
print("python lenet.py -d # deserialize plan file and run inference")
sys.exit()
if args.s:
APIToModel(1)
else:
runtime = trt.Runtime(gLogger)
assert runtime
with open(engine_path, "rb") as f:
engine = runtime.deserialize_cuda_engine(f.read())
assert engine
context = engine.create_execution_context()
assert context
data = np.ones((INPUT_H * INPUT_W), dtype=np.float32)
host_in = cuda.pagelocked_empty(INPUT_H * INPUT_W, dtype=np.float32)
np.copyto(host_in, data.ravel())
host_out = cuda.pagelocked_empty(OUTPUT_SIZE, dtype=np.float32)
doInference(context, host_in, host_out, 1)
print(f'Output: {host_out}')