forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
loader.js
74 lines (70 loc) · 2.2 KB
/
loader.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs';
import * as ui from './ui';
import * as util from './util';
/**
* Test whether a given URL is retrievable.
*/
export async function urlExists(url) {
ui.status('Testing url ' + url);
try {
const response = await fetch(url, {method: 'HEAD'});
return response.ok;
} catch (err) {
return false;
}
}
/**
* Load pretrained model stored at a remote URL.
*
* @return An instance of `tf.Model` with model topology and weights loaded.
*/
export async function loadHostedPretrainedModel(url) {
ui.status('Loading pretrained model from ' + url);
try {
const model = await tf.loadLayersModel(url);
ui.status('Done loading pretrained model.');
// We can't load a model twice due to
// https://github.com/tensorflow/tfjs/issues/34
// Therefore we remove the load buttons to avoid user confusion.
ui.disableLoadModelButtons();
return model;
} catch (err) {
console.error(err);
ui.status('Loading pretrained model failed.');
}
}
/**
* Load data file stored at a remote URL.
*
* @return An object containing metadata as key-value pairs.
*/
export async function loadHostedData(url, numClasses) {
ui.status('Loading data from ' + url);
try {
const raw = await fetch(url);
const data = await raw.json();
const result = util.convertDataToTensors(data, numClasses);
result['data'] = data;
ui.status('Done loading data.');
return result;
} catch (err) {
console.error(err);
ui.status('Loading data failed.');
}
}