forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
date_format.js
288 lines (256 loc) · 9.83 KB
/
date_format.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* Date formats and conversion utility functions.
*
* This file is used for the training of the date-conversion model and
* date conversions based on the trained model.
*
* It contains functions that generate random dates and represent them in
* several different formats such as (2019-01-20 and 20JAN19).
* It also contains functions that convert the text representation of
* the dates into one-hot `tf.Tensor` representations.
*/
const tf = require('@tensorflow/tfjs');
const MONTH_NAMES_FULL = [
'January', 'February', 'March', 'April', 'May', 'June', 'July', 'August',
'September', 'October', 'November', 'December'
];
const MONTH_NAMES_3LETTER =
MONTH_NAMES_FULL.map(name => name.slice(0, 3).toUpperCase());
const MIN_DATE = new Date('1950-01-01').getTime();
const MAX_DATE = new Date('2050-01-01').getTime();
export const INPUT_LENGTH = 12 // Maximum length of all input formats.
export const OUTPUT_LENGTH = 10 // Length of 'YYYY-MM-DD'.
// Use "\n" for padding for both input and output. It has to be at the
// beginning so that `mask_zero=True` can be used in the keras model.
export const INPUT_VOCAB = '\n0123456789/-., ' +
MONTH_NAMES_3LETTER.join('')
.split('')
.filter(function(item, i, ar) {
return ar.indexOf(item) === i;
})
.join('');
// OUTPUT_VOCAB includes an start-of-sequence (SOS) token, represented as
// '\t'. Note that the date strings are represented in terms of their
// constituent characters, not words or anything else.
export const OUTPUT_VOCAB = '\n\t0123456789-';
export const START_CODE = 1;
/**
* Generate a random date.
*
* @return {[number, number, number]} Year as an integer, month as an
* integer >= 1 and <= 12, day as an integer >= 1.
*/
export function generateRandomDateTuple() {
const date = new Date(Math.random() * (MAX_DATE - MIN_DATE) + MIN_DATE);
return [date.getFullYear(), date.getMonth() + 1, date.getDate()];
}
function toTwoDigitString(num) {
return num < 10 ? `0${num}` : `${num}`;
}
/** Date format such as 01202019. */
export function dateTupleToDDMMMYYYY(dateTuple) {
const monthStr = MONTH_NAMES_3LETTER[dateTuple[1] - 1];
const dayStr = toTwoDigitString(dateTuple[2]);
return `${dayStr}${monthStr}${dateTuple[0]}`;
}
/** Date format such as 01/20/2019. */
export function dateTupleToMMSlashDDSlashYYYY(dateTuple) {
const monthStr = toTwoDigitString(dateTuple[1]);
const dayStr = toTwoDigitString(dateTuple[2]);
return `${monthStr}/${dayStr}/${dateTuple[0]}`;
}
/** Date format such as 1/20/2019. */
export function dateTupleToMSlashDSlashYYYY(dateTuple) {
return `${dateTuple[1]}/${dateTuple[2]}/${dateTuple[0]}`;
}
/** Date format such as 01/20/19. */
export function dateTupleToMMSlashDDSlashYY(dateTuple) {
const monthStr = toTwoDigitString(dateTuple[1]);
const dayStr = toTwoDigitString(dateTuple[2]);
const yearStr = `${dateTuple[0]}`.slice(2);
return `${monthStr}/${dayStr}/${yearStr}`;
}
/** Date format such as 1/20/19. */
export function dateTupleToMSlashDSlashYY(dateTuple) {
const yearStr = `${dateTuple[0]}`.slice(2);
return `${dateTuple[1]}/${dateTuple[2]}/${yearStr}`;
}
/** Date format such as 012019. */
export function dateTupleToMMDDYY(dateTuple) {
const monthStr = toTwoDigitString(dateTuple[1]);
const dayStr = toTwoDigitString(dateTuple[2]);
const yearStr = `${dateTuple[0]}`.slice(2);
return `${monthStr}${dayStr}${yearStr}`;
}
/** Date format such as JAN 20 19. */
export function dateTupleToMMMSpaceDDSpaceYY(dateTuple) {
const monthStr = MONTH_NAMES_3LETTER[dateTuple[1] - 1];
const dayStr = toTwoDigitString(dateTuple[2]);
const yearStr = `${dateTuple[0]}`.slice(2);
return `${monthStr} ${dayStr} ${yearStr}`;
}
/** Date format such as JAN 20 2019. */
export function dateTupleToMMMSpaceDDSpaceYYYY(dateTuple) {
const monthStr = MONTH_NAMES_3LETTER[dateTuple[1] - 1];
const dayStr = toTwoDigitString(dateTuple[2]);
return `${monthStr} ${dayStr} ${dateTuple[0]}`;
}
/** Date format such as JAN 20, 19. */
export function dateTupleToMMMSpaceDDCommaSpaceYY(dateTuple) {
const monthStr = MONTH_NAMES_3LETTER[dateTuple[1] - 1];
const dayStr = toTwoDigitString(dateTuple[2]);
const yearStr = `${dateTuple[0]}`.slice(2);
return `${monthStr} ${dayStr}, ${yearStr}`;
}
/** Date format such as JAN 20, 2019. */
export function dateTupleToMMMSpaceDDCommaSpaceYYYY(dateTuple) {
const monthStr = MONTH_NAMES_3LETTER[dateTuple[1] - 1];
const dayStr = toTwoDigitString(dateTuple[2]);
return `${monthStr} ${dayStr}, ${dateTuple[0]}`;
}
/** Date format such as 20-01-2019. */
export function dateTupleToDDDashMMDashYYYY(dateTuple) {
const monthStr = toTwoDigitString(dateTuple[1]);
const dayStr = toTwoDigitString(dateTuple[2]);
return `${dayStr}-${monthStr}-${dateTuple[0]}`;
}
/** Date format such as 20-1-2019. */
export function dateTupleToDDashMDashYYYY(dateTuple) {
return `${dateTuple[2]}-${dateTuple[1]}-${dateTuple[0]}`;
}
/** Date format such as 20.01.2019. */
export function dateTupleToDDDotMMDotYYYY(dateTuple) {
const monthStr = toTwoDigitString(dateTuple[1]);
const dayStr = toTwoDigitString(dateTuple[2]);
return `${dayStr}.${monthStr}.${dateTuple[0]}`;
}
/** Date format such as 20.1.2019. */
export function dateTupleToDDotMDotYYYY(dateTuple) {
return `${dateTuple[2]}.${dateTuple[1]}.${dateTuple[0]}`;
}
/** Date format such as 2019.01.20. */
export function dateTupleToYYYYDotMMDotDD(dateTuple) {
const monthStr = toTwoDigitString(dateTuple[1]);
const dayStr = toTwoDigitString(dateTuple[2]);
return `${dateTuple[0]}.${monthStr}.${dayStr}`;
}
/** Date format such as 2019.1.20. */
export function dateTupleToYYYYDotMDotD(dateTuple) {
return `${dateTuple[0]}.${dateTuple[1]}.${dateTuple[2]}`;
}
/** Date format such as 20190120. */
export function dateTupleToYYYYMMDD(dateTuple) {
const monthStr = toTwoDigitString(dateTuple[1]);
const dayStr = toTwoDigitString(dateTuple[2]);
return `${dateTuple[0]}${monthStr}${dayStr}`;
}
/** Date format such as 2019-1-20. */
export function dateTupleToYYYYDashMDashD(dateTuple) {
return `${dateTuple[0]}-${dateTuple[1]}-${dateTuple[2]}`;
}
/**
* Date format such as 2019-01-20
* (i.e., the ISO format and the conversion target).
* */
export function dateTupleToYYYYDashMMDashDD(dateTuple) {
const monthStr = toTwoDigitString(dateTuple[1]);
const dayStr = toTwoDigitString(dateTuple[2]);
return `${dateTuple[0]}-${monthStr}-${dayStr}`;
}
export const INPUT_FNS = [
dateTupleToDDMMMYYYY,
dateTupleToMMDDYY,
dateTupleToMMSlashDDSlashYY,
dateTupleToMMSlashDDSlashYYYY,
dateTupleToMSlashDSlashYYYY,
dateTupleToDDDashMMDashYYYY,
dateTupleToDDashMDashYYYY,
dateTupleToMMMSpaceDDSpaceYY,
dateTupleToMSlashDSlashYY,
dateTupleToMMMSpaceDDSpaceYYYY,
dateTupleToMMMSpaceDDCommaSpaceYY,
dateTupleToMMMSpaceDDCommaSpaceYYYY,
dateTupleToDDDotMMDotYYYY,
dateTupleToDDotMDotYYYY,
dateTupleToYYYYDotMMDotDD,
dateTupleToYYYYDotMDotD,
dateTupleToYYYYMMDD,
dateTupleToYYYYDashMDashD,
dateTupleToYYYYDashMMDashDD
]; // TODO(cais): Add more formats if necessary.
/**
* Encode a number of input date strings as a `tf.Tensor`.
*
* The encoding is a sequence of one-hot vectors. The sequence is
* padded at the end to the maximum possible length of any valid
* input date strings. The padding value is zero.
*
* @param {string[]} dateStrings Input date strings. Each element of the array
* must be one of the formats listed above. It is okay to mix multiple formats
* in the array.
* @returns {tf.Tensor} One-hot encoded characters as a `tf.Tensor`, of dtype
* `float32` and shape `[numExamples, maxInputLength]`, where `maxInputLength`
* is the maximum possible input length of all valid input date-string formats.
*/
export function encodeInputDateStrings(dateStrings) {
const n = dateStrings.length;
const x = tf.buffer([n, INPUT_LENGTH], 'float32');
for (let i = 0; i < n; ++i) {
for (let j = 0; j < INPUT_LENGTH; ++j) {
if (j < dateStrings[i].length) {
const char = dateStrings[i][j];
const index = INPUT_VOCAB.indexOf(char);
if (index === -1) {
throw new Error(`Unknown char: ${char}`);
}
x.set(index, i, j);
}
}
}
return x.toTensor();
}
/**
* Encode a number of output date strings as a `tf.Tensor`.
*
* The encoding is a sequence of integer indices.
*
* @param {string[]} dateStrings An array of output date strings, must be in the
* ISO date format (YYYY-MM-DD).
* @returns {tf.Tensor} Integer indices of the characters as a `tf.Tensor`, of
* dtype `int32` and shape `[numExamples, outputLength]`, where `outputLength`
* is the length of the standard output format (i.e., `10`).
*/
export function encodeOutputDateStrings(dateStrings, oneHot = false) {
const n = dateStrings.length;
const x = tf.buffer([n, OUTPUT_LENGTH], 'int32');
for (let i = 0; i < n; ++i) {
tf.util.assert(
dateStrings[i].length === OUTPUT_LENGTH,
`Date string is not in ISO format: "${dateStrings[i]}"`);
for (let j = 0; j < OUTPUT_LENGTH; ++j) {
const char = dateStrings[i][j];
const index = OUTPUT_VOCAB.indexOf(char);
if (index === -1) {
throw new Error(`Unknown char: ${char}`);
}
x.set(index, i, j);
}
}
return x.toTensor();
}