forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.js
114 lines (101 loc) · 3.74 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs';
import * as loader from './loader';
import * as ui from './ui';
import {OOV_CHAR, padSequences} from './sequence_utils';
const HOSTED_URLS = {
model:
'https://storage.googleapis.com/tfjs-models/tfjs/sentiment_cnn_v1/model.json',
metadata:
'https://storage.googleapis.com/tfjs-models/tfjs/sentiment_cnn_v1/metadata.json'
};
const LOCAL_URLS = {
model: './resources/model.json',
metadata: './resources/metadata.json'
};
class SentimentPredictor {
/**
* Initializes the Sentiment demo.
*/
async init(urls) {
this.urls = urls;
this.model = await loader.loadHostedPretrainedModel(urls.model);
await this.loadMetadata();
return this;
}
async loadMetadata() {
const sentimentMetadata =
await loader.loadHostedMetadata(this.urls.metadata);
ui.showMetadata(sentimentMetadata);
this.indexFrom = sentimentMetadata['index_from'];
this.maxLen = sentimentMetadata['max_len'];
console.log('indexFrom = ' + this.indexFrom);
console.log('maxLen = ' + this.maxLen);
this.wordIndex = sentimentMetadata['word_index'];
this.vocabularySize = sentimentMetadata['vocabulary_size'];
console.log('vocabularySize = ', this.vocabularySize);
}
predict(text) {
// Convert to lower case and remove all punctuations.
const inputText =
text.trim().toLowerCase().replace(/(\.|\,|\!)/g, '').split(' ');
// Convert the words to a sequence of word indices.
const sequence = inputText.map(word => {
let wordIndex = this.wordIndex[word] + this.indexFrom;
if (wordIndex > this.vocabularySize) {
wordIndex = OOV_CHAR;
}
return wordIndex;
});
// Perform truncation and padding.
const paddedSequence = padSequences([sequence], this.maxLen);
const input = tf.tensor2d(paddedSequence, [1, this.maxLen]);
const beginMs = performance.now();
const predictOut = this.model.predict(input);
const score = predictOut.dataSync()[0];
predictOut.dispose();
const endMs = performance.now();
return {score: score, elapsed: (endMs - beginMs)};
}
};
/**
* Loads the pretrained model and metadata, and registers the predict
* function with the UI.
*/
async function setupSentiment() {
if (await loader.urlExists(HOSTED_URLS.model)) {
ui.status('Model available: ' + HOSTED_URLS.model);
const button = document.getElementById('load-pretrained-remote');
button.addEventListener('click', async () => {
const predictor = await new SentimentPredictor().init(HOSTED_URLS);
ui.prepUI(x => predictor.predict(x));
});
button.style.display = 'inline-block';
}
if (await loader.urlExists(LOCAL_URLS.model)) {
ui.status('Model available: ' + LOCAL_URLS.model);
const button = document.getElementById('load-pretrained-local');
button.addEventListener('click', async () => {
const predictor = await new SentimentPredictor().init(LOCAL_URLS);
ui.prepUI(x => predictor.predict(x));
});
button.style.display = 'inline-block';
}
ui.status('Standing by.');
}
setupSentiment();