From 28598f3939f9a04800f514e7fe62ab9bb8f617ec Mon Sep 17 00:00:00 2001 From: Russell Bryant Date: Fri, 22 Nov 2024 19:22:53 -0500 Subject: [PATCH] [Core] remove temporary local variables in LLMEngine.__init__ (#10577) Signed-off-by: Russell Bryant --- vllm/engine/llm_engine.py | 143 ++++++++++++++++++-------------------- 1 file changed, 66 insertions(+), 77 deletions(-) diff --git a/vllm/engine/llm_engine.py b/vllm/engine/llm_engine.py index 2a5eaf1340762..fb21b2dedeb74 100644 --- a/vllm/engine/llm_engine.py +++ b/vllm/engine/llm_engine.py @@ -231,19 +231,18 @@ def __init__( use_cached_outputs: bool = False, ) -> None: - # TODO: remove the local variables and use self.* throughout the class. - model_config = self.model_config = vllm_config.model_config - cache_config = self.cache_config = vllm_config.cache_config - lora_config = self.lora_config = vllm_config.lora_config - parallel_config = self.parallel_config = vllm_config.parallel_config - scheduler_config = self.scheduler_config = vllm_config.scheduler_config - device_config = self.device_config = vllm_config.device_config - speculative_config = self.speculative_config = vllm_config.speculative_config # noqa - load_config = self.load_config = vllm_config.load_config - decoding_config = self.decoding_config = vllm_config.decoding_config or DecodingConfig( # noqa + self.model_config = vllm_config.model_config + self.cache_config = vllm_config.cache_config + self.lora_config = vllm_config.lora_config + self.parallel_config = vllm_config.parallel_config + self.scheduler_config = vllm_config.scheduler_config + self.device_config = vllm_config.device_config + self.speculative_config = vllm_config.speculative_config # noqa + self.load_config = vllm_config.load_config + self.decoding_config = vllm_config.decoding_config or DecodingConfig( # noqa ) - prompt_adapter_config = self.prompt_adapter_config = vllm_config.prompt_adapter_config # noqa - observability_config = self.observability_config = vllm_config.observability_config or ObservabilityConfig( # noqa + self.prompt_adapter_config = vllm_config.prompt_adapter_config # noqa + self.observability_config = vllm_config.observability_config or ObservabilityConfig( # noqa ) logger.info( @@ -265,54 +264,43 @@ def __init__( "mm_processor_kwargs=%s, pooler_config=%r," "compilation_config=%r", VLLM_VERSION, - model_config.model, - speculative_config, - model_config.tokenizer, - model_config.skip_tokenizer_init, - model_config.tokenizer_mode, - model_config.revision, - model_config.override_neuron_config, - model_config.tokenizer_revision, - model_config.trust_remote_code, - model_config.dtype, - model_config.max_model_len, - load_config.download_dir, - load_config.load_format, - parallel_config.tensor_parallel_size, - parallel_config.pipeline_parallel_size, - parallel_config.disable_custom_all_reduce, - model_config.quantization, - model_config.enforce_eager, - cache_config.cache_dtype, - model_config.quantization_param_path, - device_config.device, - decoding_config, - observability_config, - model_config.seed, - model_config.served_model_name, - scheduler_config.num_scheduler_steps, - scheduler_config.chunked_prefill_enabled, - scheduler_config.multi_step_stream_outputs, - cache_config.enable_prefix_caching, - model_config.use_async_output_proc, + self.model_config.model, + self.speculative_config, + self.model_config.tokenizer, + self.model_config.skip_tokenizer_init, + self.model_config.tokenizer_mode, + self.model_config.revision, + self.model_config.override_neuron_config, + self.model_config.tokenizer_revision, + self.model_config.trust_remote_code, + self.model_config.dtype, + self.model_config.max_model_len, + self.load_config.download_dir, + self.load_config.load_format, + self.parallel_config.tensor_parallel_size, + self.parallel_config.pipeline_parallel_size, + self.parallel_config.disable_custom_all_reduce, + self.model_config.quantization, + self.model_config.enforce_eager, + self.cache_config.cache_dtype, + self.model_config.quantization_param_path, + self.device_config.device, + self.decoding_config, + self.observability_config, + self.model_config.seed, + self.model_config.served_model_name, + self.scheduler_config.num_scheduler_steps, + self.scheduler_config.chunked_prefill_enabled, + self.scheduler_config.multi_step_stream_outputs, + self.cache_config.enable_prefix_caching, + self.model_config.use_async_output_proc, use_cached_outputs, - model_config.mm_processor_kwargs, - model_config.pooler_config, + self.model_config.mm_processor_kwargs, + self.model_config.pooler_config, vllm_config.compilation_config, ) # TODO(woosuk): Print more configs in debug mode. - self.model_config = model_config - self.cache_config = cache_config - self.lora_config = lora_config - self.parallel_config = parallel_config - self.scheduler_config = scheduler_config - self.device_config = device_config - self.speculative_config = speculative_config - self.load_config = load_config - self.decoding_config = decoding_config or DecodingConfig() - self.prompt_adapter_config = prompt_adapter_config - self.observability_config = observability_config or ObservabilityConfig( - ) + self.log_stats = log_stats self.use_cached_outputs = use_cached_outputs @@ -334,15 +322,15 @@ def get_tokenizer_for_seq(sequence: Sequence) -> AnyTokenizer: self.seq_counter = Counter() self.generation_config_fields = _load_generation_config_dict( - model_config) + self.model_config) - self.input_preprocessor = InputPreprocessor(model_config, + self.input_preprocessor = InputPreprocessor(self.model_config, self.tokenizer, mm_registry) self.input_registry = input_registry self.input_processor = input_registry.create_input_processor( - model_config) + self.model_config) self.model_executor = executor_class(vllm_config=vllm_config, ) @@ -354,36 +342,36 @@ def get_tokenizer_for_seq(sequence: Sequence) -> AnyTokenizer: from vllm.model_executor.model_loader import ( get_architecture_class_name) usage_message.report_usage( - get_architecture_class_name(model_config), + get_architecture_class_name(self.model_config), usage_context, extra_kvs={ # Common configuration "dtype": - str(model_config.dtype), + str(self.model_config.dtype), "tensor_parallel_size": - parallel_config.tensor_parallel_size, + self.parallel_config.tensor_parallel_size, "block_size": - cache_config.block_size, + self.cache_config.block_size, "gpu_memory_utilization": - cache_config.gpu_memory_utilization, + self.cache_config.gpu_memory_utilization, # Quantization "quantization": - model_config.quantization, + self.model_config.quantization, "kv_cache_dtype": - str(cache_config.cache_dtype), + str(self.cache_config.cache_dtype), # Feature flags "enable_lora": - bool(lora_config), + bool(self.lora_config), "enable_prompt_adapter": - bool(prompt_adapter_config), + bool(self.prompt_adapter_config), "enable_prefix_caching": - cache_config.enable_prefix_caching, + self.cache_config.enable_prefix_caching, "enforce_eager": - model_config.enforce_eager, + self.model_config.enforce_eager, "disable_custom_all_reduce": - parallel_config.disable_custom_all_reduce, + self.parallel_config.disable_custom_all_reduce, }) if self.tokenizer: @@ -402,7 +390,7 @@ def get_tokenizer_for_seq(sequence: Sequence) -> AnyTokenizer: for _ in range(self.parallel_config.pipeline_parallel_size) ] - if model_config.use_async_output_proc: + if self.model_config.use_async_output_proc: process_model_outputs = weak_bind(self._process_model_outputs) self.async_callbacks = [ @@ -422,11 +410,11 @@ def get_tokenizer_for_seq(sequence: Sequence) -> AnyTokenizer: # GPU and CPU blocks, which are profiled in the distributed executor. self.scheduler = [ Scheduler( - scheduler_config, cache_config, lora_config, - parallel_config.pipeline_parallel_size, + self.scheduler_config, self.cache_config, self.lora_config, + self.parallel_config.pipeline_parallel_size, self.async_callbacks[v_id] - if model_config.use_async_output_proc else None) - for v_id in range(parallel_config.pipeline_parallel_size) + if self.model_config.use_async_output_proc else None) + for v_id in range(self.parallel_config.pipeline_parallel_size) ] # Metric Logging. @@ -448,7 +436,8 @@ def get_tokenizer_for_seq(sequence: Sequence) -> AnyTokenizer: "prometheus": PrometheusStatLogger( local_interval=_LOCAL_LOGGING_INTERVAL_SEC, - labels=dict(model_name=model_config.served_model_name), + labels=dict( + model_name=self.model_config.served_model_name), max_model_len=self.model_config.max_model_len), } self.stat_loggers["prometheus"].info("cache_config",