-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathutils.py
executable file
·446 lines (403 loc) · 14.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import numpy as np
import torch
import matlab
import csv
import os
import shutil
import torch.nn as nn
from torch.autograd import Variable
import matplotlib.pyplot as plt
import matlab.engine
from numpy import random
import json
from skimage import img_as_float
from skimage.metrics import structural_similarity as ssim
import sys
import time
from scipy import stats
from sklearn.metrics import precision_recall_fscore_support
from scipy.interpolate import interp1d
import pandas as pd
def signaltonoise(a, axis=0, ddof=0):
a = np.asanyarray(a)
m = a.mean(axis)
sd = a.std(axis=axis, ddof=ddof)
return np.where(sd == 0, 0, m/sd)
def timeit(method):
def timed(*args, **kw):
ts = time.time()
result = method(*args, **kw)
te = time.time()
if 'log_time' in kw:
name = kw.get('log_name', method.__name__.upper())
kw['log_time'][name] = int((te - ts) * 1000)
else:
print('%r %2.2f ms' % (method.__name__, (te - ts) * 1000))
return result
return timed
def iqa_tensor(tensor, eng, filename, metric, target):
# if not os.path.isdir(target):
# os.mkdir(target)
out = []
if metric == 'brisque':
func = eng.brisque
elif metric == 'niqe':
func = eng.niqe
elif metric == 'piqe':
func = eng.piqe
elif metric == 'CNR':
return CNR(tensor)
elif metric == 'SNR':
return SNR(tensor)
for side in range(len(tensor.shape)):
vals = []
for slice_idx in [80]:
if side == 0:
img = tensor[slice_idx, :, :]
elif side == 1:
img = tensor[:, slice_idx, :]
else:
img = tensor[:, :, slice_idx]
img = matlab.double(img.tolist())
vals += [func(img)]
out += vals
break
val_avg = sum(out) / len(out)
#np.save(target+filename+'$'+metric, out)
# return np.asarray(out)
return val_avg
def SNR(tensor):
# return the signal to noise ratio
for slice_idx in [80]:
img = tensor[slice_idx, :, :]
m = interp1d([np.min(img),np.max(img)],[0,255])
img = m(img)
val = signaltonoise(img, axis=None)
return float(val)
def CNR(tensor):
# return the signal to noise ratio
for slice_idx in [80]:
img = tensor[slice_idx, :, :] #shape 217, 181
# print(img.shape)
m = interp1d([np.min(img),np.max(img)],[0,255])
img = m(img)
roi1, roi2 = img[90:120, 80:110], img[110:140, 110:140]
return np.abs(np.mean(roi1) - np.mean(roi2)) / np.sqrt(np.square(np.std(roi1))+np.square(np.std(roi2)))
def SSIM(tensor1, tensor2, zoom=False):
ssim_list = []
for slice_idx in [80]:
if zoom:
side_a = slice_idx
side_b = slice_idx+60
img1, img2 = tensor1[side_a:side_b, side_a:side_b, 105], tensor2[side_a:side_b, side_a:side_b, 105]
else:
img1, img2 = tensor1[slice_idx, :, :], tensor2[slice_idx, :, :]
img1 = img_as_float(img1)
img2 = img_as_float(img2)
ssim_val = ssim(img1, img2)
if ssim_val != ssim_val:
print('\n\n Error @ SSIM')
sys.exit()
ssim_list.append(ssim_val)
ssim_avg = sum(ssim_list) / len(ssim_list)
return ssim_avg
def immse(tensor1, tensor2, zoom, eng):
vals = []
for slice_idx in [50, 80, 110]:
if zoom:
side_a = slice_idx
side_b = slice_idx+60
img1, img2 = tensor1[side_a:side_b, side_a:side_b, 105], tensor2[side_a:side_b, side_a:side_b, 105]
else:
img1, img2 = tensor1[slice_idx, :, :], tensor2[slice_idx, :, :]
img1, img2 = matlab.double(img1.tolist()), matlab.double(img2.tolist())
val = eng.immse(img1, img2)
vals.append(val)
val_avg = sum(vals) / len(vals)
return val_avg
def psnr(tensor1, tensor2, zoom, eng):
#all are single slice!
vals = []
for slice_idx in [50, 80, 110]:
if zoom:
side_a = slice_idx
side_b = slice_idx+60
img1, img2 = tensor1[side_a:side_b, side_a:side_b, 105], tensor2[side_a:side_b, side_a:side_b, 105]
else:
img1, img2 = tensor1[slice_idx, :, :], tensor2[slice_idx, :, :]
img1, img2 = matlab.double(img1.tolist()), matlab.double(img2.tolist())
val = eng.psnr(img1, img2)
vals.append(val)
val_avg = sum(vals) / len(vals)
return val_avg
def brisque(tensor, zoom, eng):
vals = []
for slice_idx in [50, 80, 110]:
if zoom:
side_a = slice_idx
side_b = slice_idx+60
img = tensor[side_a:side_b, side_a:side_b, 105]
else:
img = tensor[slice_idx, :, :]
img = matlab.double(img.tolist())
val = eng.brisque(img)
vals.append(val)
val_avg = sum(vals) / len(vals)
return val_avg
def niqe(tensor, zoom, eng):
vals = []
for slice_idx in [50, 80, 110]:
if zoom:
side_a = slice_idx
side_b = slice_idx+60
img = tensor[side_a:side_b, side_a:side_b, 105]
else:
img = tensor[slice_idx, :, :]
img = matlab.double(img.tolist())
val = eng.niqe(img)
vals.append(val)
val_avg = sum(vals) / len(vals)
return val_avg
def piqe(tensor, zoom, eng):
vals = []
for slice_idx in [50, 80, 110]:
if zoom:
side_a = slice_idx
side_b = slice_idx+60
img = tensor[side_a:side_b, side_a:side_b, 105]
else:
img = tensor[slice_idx, :, :]
img = matlab.double(img.tolist())
val = eng.piqe(img)
vals.append(val)
val_avg = sum(vals) / len(vals)
return val_avg
def report(y_true, y_pred):
p, r, f, s = precision_recall_fscore_support(y_true, y_pred)
#print(p[0], r[0], f[0], s[0])
#print(p[1], r[1], f[1], s[1])
#out = classification_report(y_true, y_pred)
#print(out)
return (p[0], r[0], f[0], s[0])
def p_val(o, g):
t, p = stats.ttest_ind(o, g, equal_var = True)
return p
def read_json(config_file):
with open(config_file) as config_buffer:
config = json.loads(config_buffer.read())
return config
def remove_dup(list1, list2):
# remove the 82 cases (list2) from 417 cases (list1)
# currently specifically written for this single case
# will return a list, where each element corresponding to non-82 cases in 417
# i.e.: if [0,1,2,3,4,5], and 2 is the case of 82, then will return [0,1,3,4,5]
idxs = list(range(len(list1)))
list1 = [i[:22] for i in list1]
list2 = [i[:22] for i in list2]
for item in list2:
if item in list1:
idxs.remove(list1.index(item))
#print(len(idxs), len(list1))
return idxs
def read_csv(filename):
with open(filename, 'r') as f:
reader = csv.reader(f)
your_list = list(reader)
filenames = [a[0] for a in your_list[1:]]
labels = [0 if a[1]=='NL' else 1 for a in your_list[1:]]
return filenames, labels
def save_list(txt_dir, txt_name, file):
with open(txt_dir + txt_name, 'w') as f:
f.write(str(file))
def load_list(txt_dir, txt_name):
with open(txt_dir + txt_name, 'r') as f:
return eval(f.readline())
def load_txt(txt_dir, txt_name):
List = []
with open(txt_dir + txt_name, 'r') as f:
for line in f:
List.append(line.strip('\n').replace('.nii', '.npy'))
return List
def train_valid_test_index_list(): #define our training indices
valid_index = [i for i in range(257, 337)]
train_index = [i for i in range(257)]
test_index = [i for i in range(337, 417)]
return train_index, valid_index, test_index
def padding(tensor, win_size=23):
A = np.ones((tensor.shape[0]+2*win_size, tensor.shape[1]+2*win_size, tensor.shape[2]+2*win_size)) * tensor[-1,-1,-1]
A[win_size:win_size+tensor.shape[0], win_size:win_size+tensor.shape[1], win_size:win_size+tensor.shape[2]] = tensor
return A.astype(np.float32)
def get_input_variable(index_list, Data_dir, Data_list, stage):
array_list = []
if stage == 'train':
patch_locs = [[random.randint(0, 134), random.randint(0, 170), random.randint(0, 134)] for _ in range(len(index_list))]
for i, index in enumerate(index_list):
x, y, z = patch_locs[i]
data = np.load(Data_dir + Data_list[index])
patch = data[x:x+47, y:y+47, z:z+47]
array_list.append(np.expand_dims(patch, axis = 0))
elif stage == 'valid':
patch_locs = [[25, 90, 30], [115, 90, 30], [67, 90, 90], [67, 45, 60], [67, 135, 60]]
data = np.load(Data_dir + Data_list[index_list[0]])
for i, loc in enumerate(patch_locs):
x, y, z = loc
patch = data[x:x+47, y:y+47, z:z+47]
array_list.append(np.expand_dims(patch, axis = 0))
elif stage == 'test':
for i, index in enumerate(index_list):
data = np.load(Data_dir + Data_list[index])
data = padding(data)
array_list.append(np.expand_dims(data, axis = 0))
return Variable(torch.FloatTensor(np.stack(array_list, axis = 0))).cuda()
def get_labels(index_list, Label_list, stage):
if stage in ['train', 'test']:
label_list = [Label_list[i] for i in index_list]
label_list = [0 if a=='NL' else 1 for a in label_list]
elif stage == 'valid':
label = 0 if Label_list[index_list[0]]=='NL' else 1
label_list = [label]*5
label_list = np.asarray(label_list)
return Variable(torch.LongTensor(label_list)).cuda()
def write_raw_score(f, preds, labels):
preds = preds.data.cpu().numpy()
labels = labels.data.cpu().numpy()
for index, pred in enumerate(preds):
label = str(labels[index])
pred = "__".join(map(str, list(pred)))
f.write(pred + '__' + label + '\n')
def get_confusion_matrix(preds, labels):
labels = labels.data.cpu().numpy()
preds = preds.data.cpu().numpy()
matrix = [[0, 0], [0, 0]]
for index, pred in enumerate(preds):
if np.amax(pred) == pred[0]:
if labels[index] == 0:
matrix[0][0] += 1
if labels[index] == 1:
matrix[0][1] += 1
elif np.amax(pred) == pred[1]:
if labels[index] == 0:
matrix[1][0] += 1
if labels[index] == 1:
matrix[1][1] += 1
return matrix
def matrix_sum(A, B): # sum two confusion matrices
return [[A[0][0]+B[0][0], A[0][1]+B[0][1]],
[A[1][0]+B[1][0], A[1][1]+B[1][1]]]
def get_accu(matrix): # calculate accuracy from confusion matrix
return float(matrix[0][0] + matrix[1][1])/ float(sum(matrix[0]) + sum(matrix[1]))
def softmax(x1, x2):
return np.exp(x2) / (np.exp(x1) + np.exp(x2))
def get_AD_risk(raw):
x1, x2 = raw[0, :, :, :], raw[1, :, :, :]
risk = np.exp(x2) / (np.exp(x1) + np.exp(x2))
return risk
def get_ROI(train_MCC, roi_threshold):
roi = np.load(train_MCC)
roi = roi > roi_threshold
for i in range(roi.shape[0]):
for j in range(roi.shape[1]):
for k in range(roi.shape[2]):
if i%3!=0 or j%2!=0 or k%3!=0:
roi[i,j,k] = False
return roi
def pr_interp(rc_, rc, pr):
pr_ = np.zeros_like(rc_)
locs = np.searchsorted(rc, rc_)
for idx, loc in enumerate(locs):
l = loc - 1
r = loc
r1 = rc[l] if l > -1 else 0
r2 = rc[r] if r < len(rc) else 1
p1 = pr[l] if l > -1 else 1
p2 = pr[r] if r < len(rc) else 0
t1 = (1-p2)*r2/p2/(r2-r1) if p2*(r2-r1) > 1e-16 else (1-p2)*r2/1e-16
t2 = (1-p1)*r1/p1/(r2-r1) if p1*(r2-r1) > 1e-16 else (1-p1)*r1/1e-16
t3 = (1-p1)*r1/p1 if p1 > 1e-16 else (1-p1)*r1/1e-16
a = 1 + t1 - t2
b = t3 - t1*r1 + t2*r1
pr_[idx] = rc_[idx]/(a*rc_[idx]+b)
return pr_
def read_txt(path, txt_file):
content = []
with open(path + txt_file, 'r') as f:
for line in f:
content.append(line.strip('\n'))
return content
def DPM_statistics(DPMs, Labels):
shape = DPMs[0].shape[1:]
voxel_number = shape[0] * shape[1] * shape[2]
TP, FP, TN, FN = np.zeros(shape), np.zeros(shape), np.zeros(shape), np.zeros(shape)
for label, DPM in zip(Labels, DPMs):
risk_map = get_AD_risk(DPM)
if label == 0:
TN += (risk_map < 0.5).astype(np.int)
FP += (risk_map >= 0.5).astype(np.int)
elif label == 1:
TP += (risk_map >= 0.5).astype(np.int)
FN += (risk_map < 0.5).astype(np.int)
tn = float("{0:.2f}".format(np.sum(TN) / voxel_number))
fn = float("{0:.2f}".format(np.sum(FN) / voxel_number))
tp = float("{0:.2f}".format(np.sum(TP) / voxel_number))
fp = float("{0:.2f}".format(np.sum(FP) / voxel_number))
matrix = [[tn, fn], [fp, tp]]
count = len(Labels)
TP, TN, FP, FN = TP.astype(np.float)/count, TN.astype(np.float)/count, FP.astype(np.float)/count, FN.astype(np.float)/count
ACCU = TP + TN
F1 = 2*TP/(2*TP+FP+FN)
MCC = (TP*TN-FP*FN)/(np.sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN))+0.00000001*np.ones(shape))
return matrix, ACCU, F1, MCC
def read_csv_complete(filename):
with open(filename, 'r') as f:
reader = csv.reader(f)
your_list = list(reader)
filenames, labels, demors = [], [], []
for line in your_list:
try:
demor = list(map(float, line[2:5]))
gender = [0, 1] if demor[1] == 1 else [1, 0]
demor = [(demor[0]-70.0)/10.0] + gender + [(demor[2]-27)/2]
# demor = [demor[0]] + gender + demor[2:]
except:
continue
filenames.append(line[0])
label = 0 if line[1]=='NL' else 1
labels.append(label)
demors.append(demor)
return filenames, labels, demors
# def combine_csv(f1, f2):
# with open(f1, 'r') as f:
# reader = csv.reader(f)
# csv1 = list(reader)
# with open(f2, 'r') as f:
# reader = csv.reader(f)
# csv2 = list(reader)
# filenames, labels, demors = [], [], []
# for line in csv1:
# print(line)
# break
# # try:
# # demor = list(map(float, line[2:5]))
# # gender = [0, 1] if demor[1] == 1 else [1, 0]
# # demor = [(demor[0]-70.0)/10.0] + gender + [(demor[2]-27)/2]
# # # demor = [demor[0]] + gender + demor[2:]
# # except:
# # continue
# # filenames.append(line[0])
# # label = 0 if line[1]=='NL' else 1
# # labels.append(label)
# # demors.append(demor)
# print(csv2[0])
# df1 = pd.read_csv(f1)
# df2 = pd.read_csv(f2)
# # df3 = pd.read_csv(f3)
# df4 = df1.merge(df2, 'left', on='ID')
# print(df1, df2, df4)
# print(df2['ID']=='051_S_1123')
# print(df2.loc[df2['ID']=='051_S_1123'])
# # print(df1['ID']==df2['ID'])
#
# return
if __name__ == "__main__":
# test(item=3, ittt='a', whole=3)
combine_csv('ADNI_GAN_iqa_ANOVA.csv', '/home/xzhou/fcn2020/gan2020/lookupcsv/exp0/train_15T_scanner.csv')