-
Notifications
You must be signed in to change notification settings - Fork 0
/
helper_classes.py
214 lines (166 loc) · 6.77 KB
/
helper_classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from random import randrange, uniform, shuffle, random, sample
from math import sqrt
import numpy as np
from PIL import Image, ImageDraw
POPULATION_SIZE = 10
NUMBER_OF_POLYGONS = 50
MIN_VERTICES = 3
MAX_VERTICES = 5
NUMBER_OF_PARENTS = 4
ELITISM_NUMBER = 4 # Number of fittest genotypes to carry to the next generation directly.
OFFSET = 10
PROBABILITY_MUTATION = 0.3
INPUT_IMAGE = None
IMAGE_WIDTH = 0
IMAGE_HEIGHT = 0
IMAGE_MATRIX = None
MAX_DELTA = 0
class Polygon:
def __init__(self):
self.color = [255, 255, 255, 255]
self.vertices = []
def generate(self, vertices=True, color=True, randomize_color=False):
if color and randomize_color:
self.color = generate_color()
if vertices:
self.vertices = [] # To handle mutation.
for i in range(randrange(MIN_VERTICES, MAX_VERTICES + 1)):
self.vertices.append(generate_point(IMAGE_WIDTH, IMAGE_HEIGHT))
def mutate(self):
rand = random() < 0.5
self.generate(vertices=rand, color=not rand, randomize_color=True) # Mutate either color or vertices.
class Genotype:
def __init__(self):
self.polygons = []
self.fitness = -1
self.image = None
def generate(self):
for i in range(NUMBER_OF_POLYGONS):
new_polygon = Polygon()
new_polygon.generate()
self.polygons.append(new_polygon)
def get_fitness(self):
if self.fitness == -1:
self.compute_fitness()
return self.fitness
def compute_fitness(self):
if self.image is None:
self.generate_image()
# delta_matrix = np.subtract(IMAGE_MATRIX, np.array(self.image))
# self.fitness = sqrt(np.sum(np.square(delta_matrix)))
self.fitness = get_image_error(self.image)
def get_image(self):
if self.image is None:
self.generate_image()
return self.image
def generate_image(self):
image = Image.new('RGB', (IMAGE_WIDTH, IMAGE_HEIGHT), color=(0, 0, 0, 255))
draw_image = Image.new('RGBA', (IMAGE_WIDTH, IMAGE_HEIGHT))
draw = ImageDraw.Draw(draw_image)
for polygon in self.polygons:
draw.polygon(make_tuple(polygon.vertices), fill=tuple(polygon.color), outline=tuple(polygon.color))
image.paste(draw_image, mask=draw_image)
self.image = image
def mutate(self):
# for polygon in self.polygons:
# if random() < PROBABILITY_MUTATION:
# polygon.mutate()
self.polygons[randrange(0, NUMBER_OF_POLYGONS)].mutate()
self.fitness = -1 # Resetting fitness since the genotype has been mutated.
self.image = None
class Population:
def __init__(self):
self.genotypes = []
def generate_initial(self):
for i in range(POPULATION_SIZE):
member = Genotype()
member.generate()
self.genotypes.append(member)
def select_parents(self): # Stochastic Universal Sampling
total_fitness = self.compute_total_fitness()
point_distance = total_fitness / NUMBER_OF_PARENTS
start_point = uniform(0, point_distance)
points = [start_point + i * point_distance for i in range(NUMBER_OF_PARENTS)]
parents = set()
while len(parents) < NUMBER_OF_PARENTS:
shuffle(self.genotypes)
i = 0
while i < len(points) and len(parents) < NUMBER_OF_PARENTS:
j = 0
while j < len(self.genotypes):
if self.get_subset_sum(j) > points[i]:
parents.add(self.genotypes[j])
break
j += 1
i += 1
return list(parents)
def compute_total_fitness(self):
# total_fitness = 0
# for member in self.genotypes:
# total_fitness += member.get_fitness()
# return total_fitness
f = lambda geno: sum([member.get_fitness() for member in geno])
return f(self.genotypes)
def crossover(self, parents):
shuffle(parents)
for i in range(0, NUMBER_OF_PARENTS, 2):
parents[i], parents[i + 1] = self.generate_crossover_children(parents[i], parents[i + 1])
def generate_crossover_children(self, parent_1, parent_2): # Single Point Crossover
crossover_point = randrange((4 * NUMBER_OF_POLYGONS) / 10, (6 * NUMBER_OF_POLYGONS) / 10 + 1)
child_1, child_2 = Genotype(), Genotype()
f = lambda par, child, i: child.polygons.append(par.polygons[i])
for i in range(crossover_point):
f(parent_1, child_1, i)
f(parent_2, child_2, i)
for i in range(crossover_point, NUMBER_OF_POLYGONS):
f(parent_1, child_2, i)
f(parent_2, child_1, i)
child_1.mutate()
child_2.mutate()
return child_1, child_2
def mutate(self):
for genotype in self.genotypes:
if random() < PROBABILITY_MUTATION:
genotype.mutate()
def elitism(self):
# 8 fittest genotypes are carried forward to the next generation. The remaining members are randomly chosen.
self.genotypes.sort(key=lambda f: f.get_fitness(), reverse=False)
self.genotypes = self.genotypes[:ELITISM_NUMBER] + sample(self.genotypes[ELITISM_NUMBER:], POPULATION_SIZE - ELITISM_NUMBER)
def get_subset_sum(self, end, start=0):
subset_sum, i = 0.0, start
while i <= end:
subset_sum += self.genotypes[i].get_fitness()
i += 1
return subset_sum
def get_best(self):
return np.argmin([g.get_fitness() for g in self.genotypes])
def get_best_fitness(self):
return min([g.get_fitness() for g in self.genotypes])
def generate_color():
return [randrange(0, 256) for i in range(4)]
def generate_point(x_max, y_max): # Include offset.
x, y = randrange(0, x_max + 1), randrange(0, y_max + 1)
return [x, y]
def make_tuple(vertices):
return [tuple(vertex) for vertex in vertices]
def get_image_error(image1):
error = 0.0
for x in range(IMAGE_WIDTH):
for y in range(IMAGE_HEIGHT):
# rgb1, rgb2 = image1.getpixel((x, y)), image2.getpixel((x, y))
rgb1, rgb2 = image1.getpixel((x, y)), IMAGE_MATRIX[x][y]
delta = 0.0
for i in range(3):
delta += pow(rgb1[i] - rgb2[i], 2)
error += float(sqrt(delta))
return error
def initialize_global_vars(image):
global INPUT_IMAGE, IMAGE_WIDTH, IMAGE_HEIGHT, IMAGE_MATRIX
INPUT_IMAGE = image
IMAGE_WIDTH, IMAGE_HEIGHT = image.size
IMAGE_MATRIX = []
for x in range(IMAGE_WIDTH):
current_row = []
for y in range(IMAGE_HEIGHT):
current_row.append(INPUT_IMAGE.getpixel((x, y)))
IMAGE_MATRIX.append(current_row)