diff --git a/Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex b/Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex index 83ee4aa..d169981 100644 --- a/Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex +++ b/Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex @@ -58,9 +58,12 @@ Recall that $s\wedge t:=\min(s,t)$ and $s\vee t:=\max(s,t)$. \end{remark} \subsubsection{Martingales} + \begin{definition} + Let ${(X_t)}_{t\geq 0}$ be a stochastic process. We define the \emph{natural filtration} of $X$ as $\mathcal{F}^X:={(\mathcal{F}_t^X)}_{t\geq 0}$, where $\mathcal{F}_t^X:=\sigma(X_s:s\leq t)$. + \end{definition} From now on, we will assume that we work in a filtered probability space $(\Omega,\mathcal{F},\Prob,{(\mathcal{F}_t)}_{t\geq 0})$. \begin{proposition} - Let ${(B_t)}_{t\geq 0}$ be a Brownian motion. Then, the following processes are martingales ${(M_t)}_{t\geq 0}$ with respect to the filtration induced by ${(B_t)}_{t\geq 0}$: + Let $B={(B_t)}_{t\geq 0}$ be a Brownian motion. Then, the following processes are martingales ${(M_t)}_{t\geq 0}$ with respect to the natural filtration induced by $B$: \begin{itemize} \item $M_t=B_t$ \item $M_t=B_t^2-t$