diff --git a/Mathematics/5th/Montecarlo_methods/Montecarlo_methods.tex b/Mathematics/5th/Montecarlo_methods/Montecarlo_methods.tex index a263d18..b28c557 100644 --- a/Mathematics/5th/Montecarlo_methods/Montecarlo_methods.tex +++ b/Mathematics/5th/Montecarlo_methods/Montecarlo_methods.tex @@ -190,6 +190,7 @@ $$ \Var(Y+b(X-\Exp(X)))\ll \Var(Y) $$ + We define $Y(b):=Y+b(X-\Exp(X))$. This suggests the following estimator: $$ \overline{Y}_n(b):=\frac{1}{n}\sum_{i=1}^n [Y_i+b(X_i-\Exp(X))] @@ -207,13 +208,17 @@ If $b=0$, the control variate estimator $\overline{Y}_n(b)$ coincides with the classical estimator $\overline{Y}_n$. Otherwise, the computational cost of $\overline{Y}_n(b)$ is higher than $\overline{Y}_n$, but it does not depend on the choice of $b\neq 0$. \end{remark} \begin{proposition} - The minimum of $\Var(Y(b))$ is attained for $$\hat{b}= \frac{\cov(Y,X)}{\Var(X)}$$ and in that case, $\Var(Y(\hat{b}))=\Var(Y)(1-{\rho_{XY}}^2)$, where $\rho_{XY}$ is the correlation between $X$ and $Y$. + The minimum of $\Var(Y(b))$ is attained for $$\hat{b}= -\frac{\cov(Y,X)}{\Var(X)}$$ and in that case, $\Var(Y(\hat{b}))=\Var(Y)(1-{\rho_{XY}}^2)$, where $\rho_{XY}$ is the correlation between $X$ and $Y$. \end{proposition} \begin{remark} Usually, $\hat{b}$ is unknown, but we can use an estimator of it, such as: $$ - \hat{b}_n:=\frac{\sum_{i=1}^n (Y_i-\overline{Y}_n)(X_i-\overline{X}_n)}{\sum_{i=1}^n {(X_i-\overline{X}_n)}^2} + \hat{b}_n:=-\frac{\sum_{i=1}^n (Y_i-\overline{Y}_n)(X_i-\overline{X}_n)}{\sum_{i=1}^n {(X_i-\overline{X}_n)}^2} $$ + but if we know $\Exp(X)$ and $\Var(X)$ explicitly, we can use them in the formula of $\hat{b}_n$. + \end{remark} + \begin{remark} + The result of above tell us that we should pick $X$ strongly correlated to $Y$ but simple enough to know explicitly $\Exp(X)$. \end{remark} \begin{definition} Let $\vf{X}$ be a random vector such that $\Exp(\vf{X})$ is known, and $\vf{b}\in \RR^d$. We define the \emph{multiple control variate estimator} as: diff --git a/Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex b/Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex index df4e692..7fe5d50 100644 --- a/Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex +++ b/Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex @@ -926,6 +926,72 @@ \end{enumerate} \end{proposition} \subsubsection{Generator of a diffusion} + \begin{definition}[Generator] + The \emph{generator} of the semigroup ${(P_t)}_{t\geq 0}$ is the linear operator $L$ defined by: + $$ + (Lf)(x):=\lim_{t\to 0}\frac{P_tf(x)-f(x)}{t} + $$ + for all $f\in L^\infty(\RR)$ and $x\in\RR$ such that the limit exists. Those functions form a vector space denoted by $\text{Dom}(L)$. + \end{definition} + \begin{theorem} + Let $f\in \mathcal{C}_\text{b}^2(\RR)$. Then: + \begin{enumerate} + \item $Lf$ is well-defined and it is given $\forall x\in\RR$ by: + $$ + Lf(x)=\frac{1}{2}\sigma^2(x)f''(x)+b(x)f'(x) + $$ + \item For all $t\geq 0$, we have $P_tf\in \text{Dom}(L)$ and it satisfies the \emph{Kolmogorov's equation}: + $$ + \dv{}{t}P_tf=P_t(Lf)=L(P_tf) + $$ + \item The process ${(M_t)}_{t\geq 0}$ defined as + $$ + M_t:=f(X_t)-f(X_0)-\int_0^t Lf(X_s)\dd{s} + $$ + is a continuous square-integrable martingale. + \end{enumerate} + \end{theorem} \subsubsection{Connection with PDEs} + For this section recall the diffusion equation: + \begin{equation}\label{SC:sde_pde} + \begin{cases} + \dd{X_t^x}=b(X_t^x)\dd{t}+\sigma(X_t^x)\dd{B_t} \\ + X_0^x=x + \end{cases} + \end{equation} + where $b,\sigma:\RR\to\RR$ are Lipschitz functions. Now, fix $f\in L^\infty(\RR)$ and consider the pde: + \begin{equation}\label{SC:pde_sde} + \begin{cases} + \pdv{v}{t}(t,x)=b(x)\pdv{v}{x}(t,x)+\frac{1}{2}\sigma^2(x)\pdv[2]{v}{x}(t,x) \\ + v(0,x)=f(x) + \end{cases} + \end{equation} + where $v\in \mathcal{C}^{1,2}([0,\infty)\times\RR)$. + \begin{theorem}\hfill + \begin{enumerate} + \item If $v$ is a bounded solution to the pde of \mcref{SC:pde_sde}, then we must have $\forall (t,x)\in [0,\infty)\times\RR$: + \begin{equation}\label{SC:sol_v} + v(t,x)=\Exp(f(X_t^x)) + \end{equation} + \item If $b,\sigma, f\in \mathcal{C}_\text{b}^2(\RR)$, then conversely, the function $v$ defined in \mcref{SC:sol_v} is a bounded solution of \mcref{SC:pde_sde}. + \end{enumerate} + \end{theorem} + \begin{remark} + The interest of this connection between SDEs and PDEs is two-fold: on the one hand, one can use tools from PDE theory to understand the distribution of $X_t^x$. Conversely, the probabilistic representation of \mcref{SC:sol_v} offers a practical way to numerically solve the PDE of \mcref{SC:pde_sde}, by simulation. + \end{remark} + \begin{theorem}[Feynman-Kac's formula] + Let $v\in \mathcal{C}^{1,2}([0,\infty)\times\RR)$ be a bounded solution to the pde + $$ + \begin{cases} + \pdv{v}{t}(t,x)=-h(x)v(t,x)+b(x) \pdv{v}{x}(t,x)+\frac{1}{2}\sigma^2(x)\pdv[2]{v}{x}(t,x) \\ + v(0,x)=f(x) + \end{cases} + $$ + where $f,h:\RR\to\RR$ are measurable, with $h$ non-negative. Then, we have the representation + $$ + v(t,x)=\Exp\left(f(X_t^x)\exp{-\int_0^t h(X_s^x)\dd{s}}\right) + $$ + for all $(t,x)\in [0,\infty)\times\RR$. + \end{theorem} \end{multicols} \end{document} \ No newline at end of file