From f95cde6100111bd54c351f8521e51b1f2a6e3ae0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?V=C3=ADctor?= Date: Sun, 17 Dec 2023 18:11:17 +0100 Subject: [PATCH] updated improvements dyn syst --- .../Advanced_dynamical_systems.tex | 80 +++++++++++++------ 1 file changed, 57 insertions(+), 23 deletions(-) diff --git a/Mathematics/5th/Advanced_dynamical_systems/Advanced_dynamical_systems.tex b/Mathematics/5th/Advanced_dynamical_systems/Advanced_dynamical_systems.tex index 62554c5..9eb6e18 100644 --- a/Mathematics/5th/Advanced_dynamical_systems/Advanced_dynamical_systems.tex +++ b/Mathematics/5th/Advanced_dynamical_systems/Advanced_dynamical_systems.tex @@ -405,7 +405,7 @@ \begin{remark} The converse is not true. \end{remark} - \begin{theorem} + \begin{theorem}\label{ADS:invariance_rho} Let $F,G\in\Homeoplus(\TT^1)$ be conjugate by $H\in \Homeoplus(\TT^1)$. Then, $\rho(F)=\rho(G)$. \end{theorem} \begin{proof} @@ -441,7 +441,7 @@ Let $F\in \Homeoplus(\TT^1)$ and $\mu\in \mathcal{M}(\TT^1)$. We define the \emph{push-forward measure} of $F$ as $F_*\mu(\varphi):=\mu(\varphi\circ F)$. \end{definition} \begin{definition} - We say that a measure $\mu\in\mathcal{M}(\TT^1)$ is \emph{invariant} by $F\in\Homeoplus(\TT^1)$ (or \emph{$F$-invariant}) if $F_*\mu=\mu$. We will denote by $\mathcal{M}_F(\TT^1)$ the set of $F$-invariant probability measures. + We say that a measure $\mu\in\mathcal{M}(\TT^1)$ is \emph{invariant} by $F\in\Homeo(\TT^1)$ (or \emph{$F$-invariant}) if $F_*\mu=\mu$. We will denote by $\mathcal{M}_F(\TT^1)$ the set of $F$-invariant probability measures. \end{definition} \begin{proposition} Let $F\in \Homeoplus(\TT^1)$, $x\in\TT^1$ and $n\in\NN$. @@ -568,8 +568,8 @@ \end{proposition} \begin{proof} \begin{itemizeiff} - For some $y\in Y\subseteq X$ closed, invariant and non-empty, we have: - $$Y\subseteq X = \overline{\mathcal{O}(y)}\subseteq \overline{\mathcal{O}(Y)}\subseteq \overline{Y}=Y$$ + Let $Y\subseteq X$ be closed, invariant and non-empty and take $y\in Y$. We have: + $$Y\subseteq X = \overline{\mathcal{O}(y)}\subseteq \overline{Y}=Y$$ \item Let $x\in X$. Since $\overline{\mathcal{O}(x)}\subseteq X$ is closed, invariant and non-empty, we have that $\overline{\mathcal{O}(x)}=X$. \end{itemizeiff} \end{proof} @@ -581,7 +581,7 @@ \end{enumerate} \end{theorem} \begin{proof} - First we assume $q=1$ and $p=0$. Let $f\in \mathcal{D}^0(\TT^1)$ be a lift of $F$. By \mcref{ADS:characterisation_rot_number}, we have that $\exists x\in \RR$ with $f(x)=x$. So $\Fix(f)\ne \varnothing$, and it is closed and invariant by translations. Now we write $\RR\setminus\Fix(f)$ as union of open intervals. Let $(a,b)$ be one of such connected components. Inside it, we must have either $f(x)>x$ or $f(x)x$ or $f(x)0$. \end{definition} - \begin{lemma} - Let $\mu\in\mathcal{M}(\TT^1)$. We say that $\mu$ has atoms if $\exists x\in\TT^1$ such that $\mu(\{x\})>0$ - \end{lemma} \begin{lemma}\label{ADS:lemma_atom} - Let $\mu\in\mathcal{M}(\TT^1)$. $h_\mu$ is continuous if and only if $\forall x\in\RR$, $\mu(\{x\})=0$, that is $\mu$ has no atoms. + Let $\mu\in\mathcal{M}(\TT^1)$. $h_\mu$ is continuous if and only if $\forall x\in\RR$, $\mu(\{x\})=0$, that is if $\mu$ has no atoms. \end{lemma} + \begin{proof} + \begin{itemizeiff} + Let $x_n=x+\frac{1}{n}\to x$. Then, $[0,x_n)\supset [0,x_{n+1})$ and so by the continuity of $h_\mu$ and \mcref{RFA:decresingseq} we have: + \begin{multline*} + \mu([0,x))=\lim_{n\to\infty}\mu([0,x_n))=\mu\left(\bigcap_{n\in\NN}[0,x_n)\right)=\\=\mu([0,x]) + \end{multline*} + which implies that $\mu(\{x\})=0$. + \item Let $x\in\RR$ and $x_n\to x$. Since $(x_n)$ is bounded, we can extract a monotone subsequence $(x_{n_k})$. Then: + \begin{multline*} + \lim_{n\to \infty}h(x_n)=\lim_{k\to \infty}\mu([0,x_{n_k}))=\\ + =\begin{cases} + \mu\left(\bigcup_{k\in\NN}[0,x_{n_k})\right) = \mu([0,x)) & \text{if } x_{n_k}\nearrow x \\ + \mu\left(\bigcap_{k\in\NN}[0,x_{n_k})\right) = \mu([0,x]) & \text{if } x_{n_k}\searrow x + \end{cases} + \end{multline*} + The first case is fine, and for the second one, since $\mu(\{x\})=0$, we have that $\mu([0,x])=\mu([0,x))$. + \end{itemizeiff} + \end{proof} \begin{definition} A subset $C\subseteq \RR$ is a \emph{Cantor set} if it is closed, it has no isolated points and it has empty interior. \end{definition} @@ -637,26 +671,26 @@ \end{enumerate} \end{theorem} \begin{proof} - Let $\mu\in\mathcal{M}_F(\TT^1)$ and consider $h_\mu:\RR\to\RR$ as defined above. Now assume $x\in \TT^1$ is such that $\mu(\{x\})=c>0$, then by invariance $\mu(A_n)=c>0$, where $A_n:=\{F^n(x)\}$. Note that since $\mu\leq 1$, $(A_n)$ cannot be disjoint. So $\exists n,m\in\NN$ with $n0$, then by invariance $\mu(A_n)=c>0$, where $A_n:=\{F^n(x)\}$. Note that since $\mu\leq 1$, $(A_n)$ cannot be disjoint. So $\exists n,m\in\NN$ with $n0$, $(n_k)\in\NN$ with $n_k\nearrow +\infty$ and $(x_k)\in\TT^1$ such that $\forall k\geq 0$: + Assume first that $\mathcal{M}_F(\TT^1)=\{\mu\}$ and argue by contradiction. That, is $\exists \varepsilon>0$, $(n_k)\in\NN$ with $n_k\nearrow +\infty$ and $(x_k)\in\TT^1$ such that $\forall k\geq 0$: \begin{equation}\label{ADS:nuk_mu} \abs{\frac{1}{n_k}\sum_{i=0}^{n_k-1}\varphi\circ F^i(x_k)-\int_{\TT^1}\varphi\dd{\mu}}=\abs{\int_{\TT^1}\varphi\dd{\nu_k}-\int_{\TT^1}\varphi\dd{\mu}}>\varepsilon \end{equation} $$ $$ - where $\nu_k=\frac{1}{n_k}\sum_{i=0}^{n_k-1}F_*^i\delta_{x_k}$. Note that $\nu_k\in\mathcal{\TT^1}$ and since $\mathcal{M}(\TT^1)$ is compact, after extracting a subsequence, $(\nu_k)$ converges to $\nu\in\mathcal{M}(\TT^1)$. Now, $\nu$ is invariant. Indeed: + where $\nu_k=\frac{1}{n_k}\sum_{i=0}^{n_k-1}F_*^i\delta_{x_k}$. Note that $\nu_k\in\mathcal{M}(\TT^1)$ and since $\mathcal{M}(\TT^1)$ is compact, after extracting a subsequence, $(\nu_k)$ converges to $\nu\in\mathcal{M}(\TT^1)$. Now, $\nu$ is invariant. Indeed: $$ F_*\nu_k-\nu_k=\frac{1}{n_k}(F_*^{n_k}\delta_{x_k}-\delta_{x_k})\overset{k\to\infty}{\longrightarrow} 0 $$