diff --git a/Mathematics/4th/Arithmetic/Arithmetic.tex b/Mathematics/4th/Arithmetic/Arithmetic.tex index b14049b..6915d3e 100644 --- a/Mathematics/4th/Arithmetic/Arithmetic.tex +++ b/Mathematics/4th/Arithmetic/Arithmetic.tex @@ -72,11 +72,9 @@ \begin{proof} If $p\mid a$ we are done. If not, then $\gcd(p,a)=1$ and therefore $\gcd(pb,ab)=\abs{b}$. Since $p\mid pb$ and $p\mid ab$, and by \mcref{A:gcddiv} we conclude that $p\mid b$. \end{proof} - \begin{important} - \begin{theorem}[Fundamental theorem of Arithmetic]\label{A:fundamentalthm} - Let $n\in\NN$, the there exists unique prime numbers $p_1,\ldots, p_r$ such that: $$n=p_1p_2\cdots p_r$$ - \end{theorem} - \end{important} + \begin{theorem}[Fundamental theorem of Arithmetic]\label{A:fundamentalthm} + Let $n\in\NN$, the there exists unique prime numbers $p_1,\ldots, p_r$ such that: $$n=p_1p_2\cdots p_r$$ + \end{theorem} \begin{proof} We will proof the existence by induction on $n$. If $n=1$, we are done (empty product). If $n>1$ and $n$ is prime, we are done too. If $n>1$ and $n$ is not prime, we can write $n=ab$ with $a,b0$, the continuity would imply the existence of an open set $U$ containing $\vf{x}_0$ and a $\varepsilon >0$ such that $f(\vf{x})>\varepsilon$ $\forall \vf{x}\in U$. But then we would have: $$0=\int_U f(\vf{x})\dd{\vf{x}}>\varepsilon\abs{U}>0$$ \end{proof} @@ -830,11 +828,9 @@ \begin{definition} Let $U\subset\RR^n$ be open and bounded and fix a time $t=T$. We define the \emph{parabolic cylinder} as $U_T:= U\times (0, T]$. We define the \emph{parabolic boundary} as $\Gamma_T=\overline{U_T}\setminus U_T=\Fr{U_T}\setminus(U\times \{T\})$. \end{definition} - \begin{important} - \begin{theorem}[Maximum principle]\label{PDE:max} - Let $U\subset\RR^n$ be open and bounded and fix a time $t=T$. Suppose $u\in\mathcal{C}_1^2(U_T)\cap\mathcal{C}(\overline{U_T})$ solve the heat equation in $U_T$. Then: $$\max\{u(\vf{x},t):(\vf{x},t)\in\overline{U_T}\}=\max\{u(\vf{x},t):(\vf{x},t)\in\Gamma_T\}$$ - \end{theorem} - \end{important} + \begin{theorem}[Maximum principle]\label{PDE:max} + Let $U\subset\RR^n$ be open and bounded and fix a time $t=T$. Suppose $u\in\mathcal{C}_1^2(U_T)\cap\mathcal{C}(\overline{U_T})$ solve the heat equation in $U_T$. Then: $$\max\{u(\vf{x},t):(\vf{x},t)\in\overline{U_T}\}=\max\{u(\vf{x},t):(\vf{x},t)\in\Gamma_T\}$$ + \end{theorem} \begin{proof} Let $v\in\mathcal{C}_1^2(U_T)\cap\mathcal{C}(\overline{U_T})$ such that $v_t-\alpha\laplacian v<0$. Then, $\displaystyle\max\{v(\vf{x},t):(\vf{x},t)\in\overline{U_T}\}=\max\{v(\vf{x},t):(\vf{x},t)\in\Gamma_T\}$. Indeed, if the maximum was in $U_T$ or $U\times\{T\}$ we would have $v_t\geq 0$ and $\laplacian v\leq 0$, which contradicts $v_t-\alpha\laplacian v<0$ because $\alpha>0$. diff --git a/Mathematics/4th/Real_and_functional_analysis/Real_and_functional_analysis.tex b/Mathematics/4th/Real_and_functional_analysis/Real_and_functional_analysis.tex index 40f753d..44f04a5 100644 --- a/Mathematics/4th/Real_and_functional_analysis/Real_and_functional_analysis.tex +++ b/Mathematics/4th/Real_and_functional_analysis/Real_and_functional_analysis.tex @@ -400,11 +400,9 @@ \begin{sproof} The first property is clear. Regarding the second one, just note that: $$\mathcal{S}(f\indi{E})\subseteq \mathcal{S}(g\indi{E})\implies \sup_{s\in\mathcal{S}(f\indi{E})}\int s\leq \sup_{s\in\mathcal{S}(g\indi{E})}\int s$$ \end{sproof} - \begin{important} - \begin{theorem}[Monotone convergence theorem]\label{RFA:monotone} - Let $E\subseteq\RR^n$ be a measurable set, $f\geq 0$ be a non-negative measurable function such that $\exists (f_m)\geq 0$ with $f_m$ measurable $\forall m\in\NN$ and $f_m\nearrow f$. Then: $$\int_Ef(x)\dd{x}=\lim_{m\to\infty}\int_Ef_m(x)\dd{x}$$ - \end{theorem} - \end{important} + \begin{theorem}[Monotone convergence theorem]\label{RFA:monotone} + Let $E\subseteq\RR^n$ be a measurable set, $f\geq 0$ be a non-negative measurable function such that $\exists (f_m)\geq 0$ with $f_m$ measurable $\forall m\in\NN$ and $f_m\nearrow f$. Then: $$\int_Ef(x)\dd{x}=\lim_{m\to\infty}\int_Ef_m(x)\dd{x}$$ + \end{theorem} \begin{proof} The inequality $\int_Ef_m(x)\dd{x}\leq \int_Ef(x)\dd{x}$ is obvious. We need to prove the other one. To do so it suffices to show that $\forall \varepsilon>0$ and $\forall s\in\mathcal{S}(f\indi{E})$ we have $(1-\varepsilon)\int_E s\leq {\displaystyle\lim_{m\to\infty}}\int_Ef_m(x)\dd{x}$. Let $E_m:=\{f_m\geq (1-\varepsilon)s\}$. Note that $E_m\nearrow E$ and moreover: @@ -479,11 +477,9 @@ \item If $h\in\RR^n$, $f\in \mathcal{L}^1(E)$, then: $$\int_{E-h}f(x+h)\dd{x}=\int_{-E}f(-x)\dd{x}=\int_{E}f(x)\dd{x}$$ \end{enumerate} \end{proposition} - \begin{important} - \begin{theorem}[Dominated convergence theorem]\label{RFA:dominated} - Let $E\subseteq\RR^n$ be a measurable set, $f$ be a measurable function over $E$ such that $\exists (f_m)$ measurable with $f_m\almoste{\rightarrow} f$ and $\abs{f_m(x)}\almoste\leq g(x)$ on $E$ with $g\in \mathcal{L}^1(E)$ $\forall m\in\NN$. Then, $f, f_m\in \mathcal{L}^1(E)$ $\forall m\in\NN$ and: $$\int_Ef(x)\dd{x}=\lim_{m\to\infty}\int_Ef_m(x)\dd{x}$$ - \end{theorem} - \end{important} + \begin{theorem}[Dominated convergence theorem]\label{RFA:dominated} + Let $E\subseteq\RR^n$ be a measurable set, $f$ be a measurable function over $E$ such that $\exists (f_m)$ measurable with $f_m\almoste{\rightarrow} f$ and $\abs{f_m(x)}\almoste\leq g(x)$ on $E$ with $g\in \mathcal{L}^1(E)$ $\forall m\in\NN$. Then, $f, f_m\in \mathcal{L}^1(E)$ $\forall m\in\NN$ and: $$\int_Ef(x)\dd{x}=\lim_{m\to\infty}\int_Ef_m(x)\dd{x}$$ + \end{theorem} \begin{proposition} Let $E\subseteq\RR^n$ be a measurable set, $f,g\in \mathcal{L}^1(E)$ and $\lambda\in\RR$. Then: \begin{enumerate} @@ -615,35 +611,31 @@ \begin{corollary} Let $f:\RR^{p+q}\rightarrow\RR$ be a measurable function. Then, $f$ is integrable if and only if: $$\int_{\RR^q}\dd{y}\int_{\RR^p}\abs{f(x,y)}\dd{x}<\infty$$ \end{corollary} - \begin{important} - \begin{theorem}[Fubini's theorem]\label{RFA:fubini} - Let $f\in \mathcal{L}^1(\RR^{p+q})$. Then: - \begin{enumerate} - \item $f(\cdot,y)\overset{\text{a.e.}}{\in} \mathcal{L}^1(\RR^p)$ and $f(x,\cdot)\overset{\text{a.e.}}{\in}\mathcal{L}^1(\RR^q)$, $x\in\RR^p$, $y\in\RR^q$. - \item Let $N_p$ and $N_q$ be the respective null sets where the above functions aren't integrable. Then the functions - \begin{align*} - \Phi(y) & =\begin{cases} - \int_{\RR^p}f(x,y)\dd{x} & \text{if } y\in\RR^q\setminus N_q \\ - 0 & \text{if } y\in N_q - \end{cases} \\ \Psi(x)&=\begin{cases} - \int_{\RR^q}f(x,y)\dd{y} & \text{if } x\in\RR^p\setminus N_p \\ - 0 & \text{if } x\in N_p - \end{cases} - \end{align*} - are integrable on $\RR^q$ and $\RR^p$, respectively. - \item \hfill $$\int_{\RR^q}\Phi(y)\dd{y}=\int_{\RR^{p+q}}f(x,y)\dd{(x,y)}=\int_{\RR^p}\Psi(x)\dd{x}$$ - \end{enumerate} - \end{theorem} - \end{important} + \begin{theorem}[Fubini's theorem]\label{RFA:fubini} + Let $f\in \mathcal{L}^1(\RR^{p+q})$. Then: + \begin{enumerate} + \item $f(\cdot,y)\overset{\text{a.e.}}{\in} \mathcal{L}^1(\RR^p)$ and $f(x,\cdot)\overset{\text{a.e.}}{\in}\mathcal{L}^1(\RR^q)$, $x\in\RR^p$, $y\in\RR^q$. + \item Let $N_p$ and $N_q$ be the respective null sets where the above functions aren't integrable. Then the functions + \begin{align*} + \Phi(y) & =\begin{cases} + \int_{\RR^p}f(x,y)\dd{x} & \text{if } y\in\RR^q\setminus N_q \\ + 0 & \text{if } y\in N_q + \end{cases} \\ \Psi(x)&=\begin{cases} + \int_{\RR^q}f(x,y)\dd{y} & \text{if } x\in\RR^p\setminus N_p \\ + 0 & \text{if } x\in N_p + \end{cases} + \end{align*} + are integrable on $\RR^q$ and $\RR^p$, respectively. + \item \hfill $$\int_{\RR^q}\Phi(y)\dd{y}=\int_{\RR^{p+q}}f(x,y)\dd{(x,y)}=\int_{\RR^p}\Psi(x)\dd{x}$$ + \end{enumerate} + \end{theorem} \subsubsection{Change of variables} \begin{definition} Let $U,V\subseteq\RR^n$ be open sets. A \emph{change of variables} is a diffeomorphism $\vf\varphi:U\rightarrow V$ of class $\mathcal{C}^1$. \end{definition} - \begin{important} - \begin{theorem}[Change of variables] - Let $U,V\subseteq\RR^n$ be open sets and $\vf\varphi:U\rightarrow V$ be a change of variables. If $f:\RR^n\rightarrow[0,\infty]$ is measurable or integrable on $V$, then so is $(f\circ\vf\varphi)\abs{J\vf\varphi}$ and: $$\int_{V} f(x)\dd{x}=\int_Uf(\vf\varphi(t))\abs{J\vf\varphi(t)}\dd{t}$$ - \end{theorem} - \end{important} + \begin{theorem}[Change of variables] + Let $U,V\subseteq\RR^n$ be open sets and $\vf\varphi:U\rightarrow V$ be a change of variables. If $f:\RR^n\rightarrow[0,\infty]$ is measurable or integrable on $V$, then so is $(f\circ\vf\varphi)\abs{J\vf\varphi}$ and: $$\int_{V} f(x)\dd{x}=\int_Uf(\vf\varphi(t))\abs{J\vf\varphi(t)}\dd{t}$$ + \end{theorem} \subsection{Banach spaces} \subsubsection{Normed vector spaces} \begin{definition} @@ -953,11 +945,9 @@ \begin{proof} By \mcref{RFA:lemmaalphabeta}, $\forall y\in K$ $\exists h_y\in\mathcal{C}(A)$ such that $h_y(y)=f(y)$ and $h_y(x)=f(x)$. By continuity there is a neighbourhood $N_y$ of $y$ such that $h_y