diff --git a/Mathematics/4th/Real_and_functional_analysis/Real_and_functional_analysis.tex b/Mathematics/4th/Real_and_functional_analysis/Real_and_functional_analysis.tex index ec8ed6b..5c2286f 100644 --- a/Mathematics/4th/Real_and_functional_analysis/Real_and_functional_analysis.tex +++ b/Mathematics/4th/Real_and_functional_analysis/Real_and_functional_analysis.tex @@ -1619,6 +1619,21 @@ Let $H$ be a Hilbert space and $T\in\mathcal{L}(H)$ be self-adjoint. Then: $$\norm{T}=\sup\{\abs{\dotp{Tx}{x}}:\norm{x}=1\}=\max\{M(T),-m(T)\}$$ where $M(T):=\sup\{\dotp{Tx}{x}:\norm{x}=1\}$ and $m(T):=\inf\{\dotp{Tx}{x}:\norm{x}=1\}$ \end{proposition} + \subsubsection{Lax-Milgram theorem} + \begin{definition} + Let $H$ be a Hilbert space and $a:H\times H\rightarrow\CC$ be a bilinear map. We say that $a$ is \emph{continuous} if $\exists C>0$ such that $\forall u,v\in H$ we have: $$\abs{a(u,v)}\leq C\norm{u}\norm{v}$$ + \end{definition} + \begin{definition} + Let $H$ be a Hilbert space and $a:H\times H\rightarrow\CC$ be a bilinear map. We say that $a$ is \emph{coercive} if $\exists\alpha>0$ such that $\forall u\in H$ we have: $$a(u,u)\geq\alpha\norm{u}^2$$ + \end{definition} + \begin{definition} + Let $H$ be a Hilbert space and $a:H\times H\rightarrow\CC$ be a bilinear map. We say that $a$ is \emph{symmetric} if $\forall u,v\in H$ we have: $$a(u,v)=\overline{a(v,u)}$$ + \end{definition} + \begin{theorem}[Lax-Milgram theorem] + Let $H$ be a Hilbert space and $a:H\times H\rightarrow\CC$ be a continuous and coercive bilinear map. Then, $\forall L\in H^*$ there exists a unique $u\in H$ such that: $$a(u,v)=L(v)\quad \forall v\in H$$ + In addition, if $\mathcal{H}$ is a real Hilbert space and $a$ is symmetric, then $u$ is the unique minimizer of: + $$\min_{v\in H}\left\{\frac{1}{2}a(v,v)-L(v)\right\}$$ + \end{theorem} \subsubsection{Orthonormal systems} \begin{definition} Let $H$ be a Hilbert space. An \emph{orthogonal system} on $H$ is a nonempty subset $E\subseteq H$ such that its vectors are pairwise orthogonal. If moreover $\norm{e}=1 $ $\forall e\in E$, we will say that $E$ is an \emph{orthonormal system}. diff --git a/Mathematics/5th/Advanced_topics_in_functional_analysis_and_PDEs/Advanced_topics_in_functional_analysis_and_PDEs.tex b/Mathematics/5th/Advanced_topics_in_functional_analysis_and_PDEs/Advanced_topics_in_functional_analysis_and_PDEs.tex index 0701f64..08db5f8 100644 --- a/Mathematics/5th/Advanced_topics_in_functional_analysis_and_PDEs/Advanced_topics_in_functional_analysis_and_PDEs.tex +++ b/Mathematics/5th/Advanced_topics_in_functional_analysis_and_PDEs/Advanced_topics_in_functional_analysis_and_PDEs.tex @@ -35,6 +35,22 @@ \item Let ${(L_n)}_{n\in\NN}\in E^*$. If $x_n\to x$ in $E$ and $L_n\overset{*}\rightharpoonup L$ in $E^*$, then $L_n(x_n)\to L(x)$ in $\CC$. \end{enumerate} \end{theorem} + \begin{proof} + We only prove the first and last points. + \begin{enumerate} + \item Let $L\in E^*$. Then, $\norm{L}< \infty$ and: + $$ + \abs{L(x_n)-L(x)}\leq \norm{L}\norm{x_n-x}\to 0 + $$ + \setcounter{enumi}{3} + \item Let $(L_n)\in E^*$ converge to $L\in E^*$ weakly-* and let $x_n\to x$ in $E$. Then: + \begin{align*} + \abs{L_n(x_n)-L(x)} & \leq \abs{(L_n-L)(x_n)}+\abs{L(x_n)-L(x)} \\ + & \leq \norm{L_n-L}\norm{x_n}+\norm{L}\norm{x_n -x} + \end{align*} + And the result follows. + \end{enumerate} + \end{proof} \begin{theorem}[Banach-Alaoglu theorem] Let $\Omega\subseteq \RR^d$ be a set and $1