diff --git a/Mathematics/3rd/Probability/Probability.tex b/Mathematics/3rd/Probability/Probability.tex index db90516..ce3e25e 100644 --- a/Mathematics/3rd/Probability/Probability.tex +++ b/Mathematics/3rd/Probability/Probability.tex @@ -735,7 +735,7 @@ \begin{sproof} Check the proof of \mnameref{RFA:dominated}. \end{sproof} - \begin{theorem}[Fatou's lemma] + \begin{theorem}[Fatou's lemma]\label{P:fatou} Let $(\Omega,\mathcal{A},\Prob)$ be a probability space and $(X_n)$ be a sequence of non-negative random variables. Then: $$\Exp(\liminf_{n\to\infty}X_n)\leq \liminf_{n\to\infty}\Exp(X_n)$$ \end{theorem} \begin{sproof} diff --git a/Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex b/Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex index c5fa341..712ad5d 100644 --- a/Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex +++ b/Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex @@ -85,6 +85,7 @@ \item $\Exp(\abs{X_t})<\infty$ for all $t\geq 0$. \item $\Exp(X_t\mid \mathcal{F}_s)=X_s$ for all $0\leq s\leq t$. \end{enumerate} + The process is called a \emph{sub-martingale} if the last condition is replaced by $\Exp(X_t\mid \mathcal{F}_s)\geq X_s$ for all $0\leq s\leq t$ and a \emph{super-martingale} if $\Exp(X_t\mid \mathcal{F}_s)\leq X_s$ for all $0\leq s\leq t$. \end{definition} \begin{proposition} Let $B={(B_t)}_{t\geq 0}$ be a Brownian motion. Then, the following processes are martingales ${(M_t)}_{t\geq 0}$ with respect to the natural filtration induced by $B$: @@ -720,14 +721,107 @@ \end{equation*} and the result follows from \mcref{SC:ito_process_martingale}. \end{proof} - \begin{lemma} + \begin{lemma}\label{SC:preNovikov} If $M$ is a non-negative local martingale, then $M$ is a super-martingale. Moreover, for $T\in \RR_{\geq 0}$, ${(M_t)}_{t\in[0,T]}$ is a martingale if and only if $\Exp(M_T)\geq \Exp(M_0)$. \end{lemma} + \begin{proof} + Since $M$ is a local martingale with localizing sequence $(T_n)$, then $\forall t\geq 0$ we have that $\Exp(M_{t\wedge T_n}\mid \mathcal{F}_s )= M_{s\wedge T_n}$ and so: + $$ + \begin{cases} + M_{s\wedge T_n} \overset{\text{a.s.}}{\underset{n\to\infty}{\longrightarrow}} M_s \\ + M_{t \wedge T_n} \overset{\text{a.s.}}{\underset{n\to\infty}{\longrightarrow}} M_t + \end{cases} + $$ + Now, by \mnameref{P:fatou} we have: + $$ + \Exp(M_t\mid \mathcal{F}_s)\leq \liminf_{n\to\infty}\Exp(M_{t\wedge T_n}\mid \mathcal{F}_s)=\liminf_{n\to\infty}M_{s\wedge T_n}\!=M_s + $$ + which shows that $M$ is a super-martingale. Now, fix $T\geq 0$, and suppose that $\Exp(M_T)\geq \Exp(M_0)$. This forces the non-increasing map $t\mapsto \Exp(M_t)$ to be constant on $[0,T]$. In particular, for any $0\leq s\leq t\leq T$, the non-negative variable $M_s-\Exp(M_t\mid \mathcal{F}_s)$ has zero mean, hence is null a.s. + \end{proof} \begin{theorem}[Novikov's condition] - For ${(Z^\phi_s)}_{s\in[0,t]}$ to be a martingale, it suffices that: + Let $t\geq 0$ be fixed and assume that: $$ \Exp\left(\exp{\frac{1}{2}\int_0^t{\phi_u}^2\dd{u}}\right)<\infty $$ + Then, ${(Z^\phi_s)}_{s\in[0,t]}$ is a martingale. + \end{theorem} + \begin{proof} + Fix $0<\varepsilon<1$. We have that for all $s\in[0,t]$: + $$ + {\left( Z_s^{(1-\varepsilon)\phi}\right)}^{\frac{1}{1-\varepsilon^2}}={\left( Z_s^\phi\right)}^{\frac{1}{1+\varepsilon}}{\left(\exp{\frac{1}{2}\int_0^s \phi_u^2\dd{u}}\right)}^{\frac{\varepsilon}{1+\varepsilon}} + $$ + Now, choosing $s=t\wedge T_n$, where $T_n$ is a localizing sequence for $Z^{(1-\varepsilon)\phi}$, taking expectation and using \mnameref{RFA:holder} we get: + \begin{align*} + \Exp\left[ + {\left( Z_{t\wedge T_n}^{(1-\varepsilon)\phi}\right)}^{\frac{1}{1-\varepsilon^2}} + \right] & \leq \Exp{\left[ + { Z_{t\wedge T_n}^\phi}\right]}^{\frac{1}{1+\varepsilon}}\Exp{\left[ + {\exp{\frac{1}{2}\int_0^{t\wedge T_n} \phi_u^2\dd{u}}}\right]}^{\frac{\varepsilon}{1+\varepsilon}} \\ + & \leq \Exp{\left[ + {\exp{\frac{1}{2}\int_0^{t} \phi_u^2\dd{u}}}\right]}^{\frac{\varepsilon}{1+\varepsilon}} + \end{align*} + because $\Exp{\left[ + { Z_{t\wedge T_n}^\phi}\right]}=1$. This implies that ${(Z_{t\wedge T_n}^{(1-\varepsilon)\phi})}$ is bounded in $L^p$ for $p=\frac{1}{\varepsilon^2}>1$. Thus: + $$ + \Exp(Z_{t}^{(1-\varepsilon)\phi})=\lim_{n\to\infty}\Exp(Z_{t\wedge T_n}^{(1-\varepsilon)\phi})=1 + $$ + In particular, $\Exp\left[{\left( Z_{t}^{(1-\varepsilon)\phi}\right)}^{p}\right]\geq 1$ and so: + $$ + 1\leq \Exp{\left[ + { Z_{t}^\phi}\right]}^{\frac{1}{1+\varepsilon}}\Exp{\left[ + {\exp{\frac{1}{2}\int_0^{t} \phi_u^2\dd{u}}}\right]}^{\frac{\varepsilon}{1+\varepsilon}} + $$ + Taking $\varepsilon\to 0$, yields $\Exp(Z_t^\phi)\geq 1$, which suffices to conclude by \mcref{SC:preNovikov}. + \end{proof} + \subsubsection{Girsanov's theorem} + \begin{theorem}[Giranov's theorem] + Let $\phi\in\MM^2_{\text{loc}}$ and suppose its associated exponential local martingale ${(Z_t^\phi)}_{t\geq 0}$ is a martingale. Then, the formula + $$ + \QQ(A):=\Exp(Z_t^\phi\indi{A})\qquad\forall A\in \mathcal{F}_t + $$ + defines a probability measure on $(\Omega, \mathcal{F}_t)$, under which the process $X={(X_s)}_{s\in[0,t]}$ defined as + $$ + X_s:=B_s-\int_0^s \phi_u\dd{u} + $$ + is a ${(\mathcal{F}_s)}_{s\in[0,t]}$-Brownian motion. + \end{theorem} + \begin{remark} + Note that, by linearity we have that for ant $\mathcal{F}_t$-measurable non-negative random variable $Y$: + $$ + \Exp_\QQ(Y)=\Exp(YZ_t^\phi)\qquad + \Exp(Y)=\Exp_\QQ\left(\frac{Y}{Z_t^\phi}\right) + $$ + where $\Exp_\QQ$ denotes the expectation with respect to $\QQ$. This is useful for transferring computations between $\Prob$ and $\QQ$. + \end{remark} + \subsection{Stochastic differential equations} + \subsubsection{Introduction} + \begin{definition} + Let $X={(X_t)}_{t\geq 0}$ be a stochastic process and $b:\RR_{\geq 0}\times\RR\to \RR$ and $\sigma:\RR_{\geq 0}\times \RR$ be deterministic functions called \emph{drift} and \emph{diffusion}, respectively. A \emph{stochastic differential equation} (\emph{SDE}) is an equation of the form: + $$ + \dd{X_t}=b(t,X_t)\dd{t}+\sigma(t,X_t)\dd{B_t} + $$ + \end{definition} + \begin{definition} + Consider the following SDE: + $$ + \dd{X_t}=b(t,X_t)\dd{t}+\sigma(t,X_t)\dd{B_t} + $$ + We say that a progressive process $X={(X_t)}_{t\geq 0}$ defined on $(\Omega, \mathcal{F}, {(\mathcal{F}_t)}_{t\geq 0}, \Prob)$ is a \emph{solution of the SDE} if ${(b(t,X_t))}_{t\geq 0}\in\MM^1_{\text{loc}}$ and ${(\sigma(t,X_t))}_{t\geq 0}\in\MM^2_{\text{loc}}$ and $\forall t\geq 0$: + $$ + X_t=X_0+\int_0^t b(s,X_s)\dd{s}+\int_0^t \sigma(s,X_s)\dd{B_s} + $$ + \end{definition} + \subsubsection{Existence and uniqueness of solutions} + \begin{theorem}[Existence and uniqueness] + Let $b:\RR_{\geq 0}\times\RR\to \RR$ be a measurable function satisfying: + \begin{itemize} + \item Uniform spatial Lipschitz continuity: $\exists C>0$ such that $\forall t\geq 0$ and $\forall x,y\in\RR$ we have: $$\abs{b(t,x)-b(t,y)}\leq C\abs{x-y}$$ + \item Local integrability in time: $\forall t \geq 0$ we have: $$\int_0^t \abs{b(s,0)}\dd{s}<\infty$$ + \end{itemize} + Then, for each $z\in\RR$, there exists a unique measurable function $x={(x_t)}_{t\geq 0}$ such that $\forall t\geq 0$: + $$ + x_t=z+\int_0^t b(s,x_s)\dd{s} + $$ \end{theorem} \end{multicols} \end{document} \ No newline at end of file