diff --git a/Mathematics/5th/Advanced_dynamical_systems/Advanced_dynamical_systems.tex b/Mathematics/5th/Advanced_dynamical_systems/Advanced_dynamical_systems.tex index 62554c5..c61f884 100644 --- a/Mathematics/5th/Advanced_dynamical_systems/Advanced_dynamical_systems.tex +++ b/Mathematics/5th/Advanced_dynamical_systems/Advanced_dynamical_systems.tex @@ -663,11 +663,15 @@ $$ \int_{\TT^1}\varphi(x)\dd{\mu}=\int_{\TT^1}\varphi(x)\dd{x} $$ - An easy check shows that if $P_n=\sum_{k=-n}^na_k\exp{2\pi\ii k x}$ is a trigonometric polynomial, then $\int_{\TT^1}P_n(x)\dd{x}=a_0$. Moreover, if $k\ne 0$: + First we consider the case of trigonometric polynomials, i.e. $P_n(x) =\sum_{k=-n}^na_k\exp{2\pi\ii k x}$, where $a_k = \bar a_{-k}$, then $\int_{\TT^1}P_n(x)\dd{x}=a_0$. + Moreover, if $k\ne 0$: $$ \int_{\TT^1}\exp{2\pi\ii kx}\dd{\mu}=\exp{2\pi\ii k\alpha}\int_{\TT^1}\exp{2\pi\ii kx}\dd{\mu}\implies \int_{\TT^1}\exp{2\pi\ii kx}\dd{\mu}=0 $$ - where the equality is due to the invariance of $\mu$. So, we also have $\int_{\TT^1}P_n(x)\dd{\mu}=a_0$. Now consider the FĂ©jer trigonometric polynomial that converge uniformly to $\varphi$ and use the \mnameref{RFA:domianted}. + where the equality is due to the invariance of $\mu$. + Thus $\int_{\TT^1}\varphi(x)\dd{\mu}=\int_{\TT^1}\varphi(x)\dd{x}$, and the result holds for trigonometric polynomials. + In the general case of a continuous function $\phi \in \mathcal{C}(\TT^1)$, we recall that the set of trigonometric polynomials is dense in $\mathcal{C}(\TT^1)$. + Thus the result for the case of trigonometric polynomials passes to the limit and we have that $\int_{\TT^1}\varphi(x)\dd{\mu}=\int_{\TT^1}\varphi(x)\dd{x}$. \end{proof} \begin{proposition}\label{ADS:uniquely_ergodic} Let $F\in\Homeoplus(\TT^1)$ with $\rho(F)\notin\quot{\QQ}{\ZZ}$. Then, $F$ is uniquely ergodic.