From db079364ffd37a0bd18d26b2149a6587fce6522e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?V=C3=ADctor?= Date: Tue, 5 Dec 2023 12:42:25 +0100 Subject: [PATCH] updated dyn systems --- .../Advanced_dynamical_systems.tex | 103 +++++++++++++++++- 1 file changed, 100 insertions(+), 3 deletions(-) diff --git a/Mathematics/5th/Advanced_dynamical_systems/Advanced_dynamical_systems.tex b/Mathematics/5th/Advanced_dynamical_systems/Advanced_dynamical_systems.tex index ca72b14..0470aad 100644 --- a/Mathematics/5th/Advanced_dynamical_systems/Advanced_dynamical_systems.tex +++ b/Mathematics/5th/Advanced_dynamical_systems/Advanced_dynamical_systems.tex @@ -631,7 +631,7 @@ $$ where the equality is due to the invariance of $\mu$. So, we also have $\int_{\TT^1}P_n(x)\dd{\mu}=a_0$. Now consider the FĂ©jer trigonometric polynomial that converge uniformly to $\varphi$ and use the \mnameref{RFA:domianted}. \end{proof} - \begin{proposition} + \begin{proposition}\label{ADS:uniquely_ergodic} Let $F\in\Homeoplus(\TT^1)$ with $\rho(F)\notin\quot{\QQ}{\ZZ}$. Then, $F$ is uniquely ergodic. \end{proposition} \begin{proof} @@ -645,7 +645,7 @@ \end{multline*} where the second equality is due to the invariance of $\mu$. Hence, $H_*\mu$ is invariant by $R_\rho$, and so $H_*\mu=\text{Leb}$. That, is $\mu(H^{-1}(A))=\text{Leb}(A)$. Recall again the set $Y$ of \mcref{ADS:eq1} and $\TT^1=X\sqcup U$, with $H^{-1}(Y)=\overline{U}$. Since $Y$ is countable, $0=\text{Leb}(Y)=\mu(H^{-1}(Y))$. Now since $H|_X$ is a homeomorphism (??is it true??), we have that $\mu(B)=\text{Leb}(H(B))$, and so $\mu$ is uniquely determined. \end{proof} - \begin{proposition} + \begin{proposition}\label{ADS:birkov_sum_converge} Let $F:\TT^1\to\TT^1$ be a homeomorphism. Then, $F$ is uniquely ergodic if and only if $\forall \varphi\in\mathcal{C}(\TT^1)$, $\exists c_\varphi\in\RR$ such that $\frac{1}{n}\sum_{i=0}^n\varphi\circ F^i$ converge uniformly to $c_\varphi$. \end{proposition} \begin{proof} @@ -669,7 +669,7 @@ \begin{definition} For $k\in\NN\cup\{0\}$ we define the set $\mathcal{D}^k(\TT^1)$ as: \begin{multline*} - \mathcal{D}^k(\TT^1):=\{f:\RR\to\RR \text{ $\mathcal{C}^k$-diffeomorphism such that}\\f(x+1)=f(x)+1\} + \mathcal{D}^k(\TT^1):=\{f:\RR\to\RR \text{ increasing $\mathcal{C}^k$-diffeomorphism}\\\text{such that }f(x+1)=f(x)+1\} \end{multline*} Note that $f\in \mathcal{D}^k(\TT^1)$ if and only if $f=\id +\varphi$, with $\varphi\in\mathcal{C}^k(\TT^1)$. We also define the set $\Diffplus^k(\TT^1)$ as: @@ -680,5 +680,102 @@ \begin{proposition} Let $F\in\Diffplus^1(\TT^1)$ with $\rho(F)\notin\quot{\QQ}{\ZZ}$, $\mu$ be the unique invariant probability measure of $F$ and $f\in\mathcal{D}^1(\TT^1)$ be a lift of $F$. Then, $\displaystyle \lim_{n\to \infty}\frac{1}{n}\log Df^n(x)=\int_{\TT^1}\log(Df)\dd{\mu}=0$. \end{proposition} + \begin{proof} + An easy induction shows that $\forall n\in\NN$ we have: + $$ + \log Df^n=\sum_{i=0}^{n-1}\log(Df\circ f^i) + $$ + So: + $$ + \frac{1}{n}\log Df^n=\frac{1}{n}\sum_{i=0}^{n-1}\log(Df\circ f^i)=\frac{1}{n}\sum_{i=0}^{n-1}\log(Df\circ F^i) + $$ + where in the last equality we have used the fact that $Df=1+D\varphi\in \mathcal{C}(\TT^1)$. By \mcref{ADS:uniquely_ergodic + ,ADS:birkov_sum_converge}, we have that $\frac{1}{n}\sum_{i=0}^{n-1}\log(Df\circ F^i)$ converges uniformly to $c:=\int_{\TT^1}\log(Df)\dd{\mu}$. Moreover, since $Df^n=1+D\varphi_n\in \mathcal{C}(\TT^1)$, we have that $\int_{\TT^1}Df^n\dd{x} =1$. Now assume without loss of generality that $c>0$. Then, for $n$ large enough we must have $Df^n(x)\sim e^{nc}$ and so: + $$ + 1=\int_{\TT^1}Df^n\dd{x}\sim \int_{\TT^1}e^{nc}\dd{x}\overset{n\to\infty}{\longrightarrow} +\infty + $$ + If $c<0$, we have a similar contradiction. Thus, $c=0$. + \end{proof} + \begin{definition} + Let $\varphi\in\mathcal{C}(\TT^1)$. We say that $\varphi$ has \emph{bounded variation} if $\exists C\geq 0$ such that for all $0=x_00$ such that: + $$ + c\leq \abs{q_n\alpha-p_n}\leq \frac{1}{n} \overset{n\to\infty}{\longrightarrow} 0 + $$ + which is a contradiction. + \end{proof} + \begin{lemma}\label{ADS:lema_var_log} + Let $f\in \mathcal{D}^1(\TT^1)$. $Df$ has bounded variation if and only if $\log Df$ has bounded variation. + \end{lemma} + \begin{theorem}[Denjoy theorem] + Let $F\in \Diffplus^1(\TT^1)$ with $\rho(F)\notin\quot{\QQ}{\ZZ}$ and $f\in\mathcal{D}^1(\TT^1)$ be a lift of $F$ whose derivative $Df$ has bounded variation. Then, $F$ is topologically conjugated to $R_{\rho(F)}$. + \end{theorem} + \begin{proof} + By \mcref{ADS:theorem_irrational_rotation_number} it suffices to show that $F$ has no wandering intervals. We argue by contraction. Assume that $J\subseteq \TT^1$ is a wandering interval, i.e.\ $\forall n\in\ZZ^*$, $F^n(J)\cap J=\varnothing$. This implies that $F^n(J) \cap F^m(J)=\varnothing$ if $n\ne m$ ans since $\sum_{n\in\ZZ}\text{Leb}(F^n(J))\leq 1$, we must have $\text{Leb}(F^n(J))\overset{n\to\infty}{\longrightarrow}0$. By assumption, $\Var(Df)<\infty$, so by \mcref{ADS:lema_var_log}, we have $\Var(\log Df) < \infty$. + By \mcref{ADS:lema_pnqn}, $\exists \frac{p_n}{q_n}\in\QQ$ such that $\abs{\alpha-\frac{p_n}{q_n}}\leq \frac{1}{{q_n}^2}$ and $q_n\overset{n\to\infty}{\longrightarrow}+\infty$. Now use \mnameref{ADS:denjoy_koksma} applied to $\psi=\log Df$ and the sequence $\frac{p_n}{q_n}$: + \begin{multline*} + \abs{\sum_{i=0}^{q_n-1}\log Df(F^i(x))-q\int_{\TT^1}\log Df\dd{\mu}}=\\=\abs{\sum_{i=0}^{q_n-1}\log Df(F^i(x))}\leq\Var(\log Df)=:V + \end{multline*} + But $$ + \sum_{i=0}^{q_n-1}\log Df(F^i(x))=\sum_{i=0}^{q_n-1}\log Df(f^i(x))=\log Df^{q_n}(x) + $$ + Thus, $-V\leq \log Df^{q_n}\leq V$, and so $\exp{-V}\leq Df^{q_n}\leq \exp{V}$. Hence, using the mean value theorem $\forall x,y\in\RR$ we have: + $$ + \exp{-V}\abs{x-y}\leq \abs{f^{q_n}(x)-f^{q_n}(y)}\leq\exp{V}\abs{x-y} + $$ + Applying this to the extremities of $J$, we have: + $$ + \exp{-V}\text{Leb}(J)\leq \text{Leb}(F^{q_n}(J))\leq \exp{V}\text{Leb}(J) + $$ + Since $q_n\overset{n\to\infty}{\longrightarrow}+\infty$, this contradicts $\text{Leb}(F^n(J))\overset{n\to\infty}{\longrightarrow}0$. + \end{proof} \end{multicols} \end{document} \ No newline at end of file