diff --git a/Mathematics/5th/Advanced_dynamical_systems/Advanced_dynamical_systems.tex b/Mathematics/5th/Advanced_dynamical_systems/Advanced_dynamical_systems.tex index 78452b0..d265e0c 100644 --- a/Mathematics/5th/Advanced_dynamical_systems/Advanced_dynamical_systems.tex +++ b/Mathematics/5th/Advanced_dynamical_systems/Advanced_dynamical_systems.tex @@ -220,7 +220,7 @@ \end{multline*} where $\vf{X}_H$ is the vector field of \mcref{ADS:ham_system}, and we used that the derivative of the determinant map is the trace. But an easy computation shows that $\div \vf{X}_H=0$. \end{proof} - \subsection{Circle dynamics} + \subsection{Dynamics on the circle} \subsubsection{Generalities} \begin{definition} Let $x,x'\in\RR$. We say that $x\sim x'$ if and only if $x-x'\in\ZZ$. We define the \emph{circle} as $\TT^1:=\quot{\RR}{\sim}$. We define the following distance in $\TT^1$: @@ -230,7 +230,7 @@ \end{definition} \begin{proposition}[Existence of a lift]\hfill \begin{enumerate} - \item For any continuous map $F:\TT^1\to \TT^1$ there exists a \emph{lift} $f$, i.e.\ a continuous map $f:\RR\to \RR$ such that $F\circ \pi=\pi\circ f$, where $\pi:\RR\to \TT^1$ is the canonical projection. + \item For any continuous map $F:\TT^1\to \TT^1$ there exists a \emph{lift} $f$, i.e.\ a continuous map $f:\RR\to \RR$ such that $F\circ \pi=\pi\circ f$, where $\pi:\RR\to\TT^1$ is the canonical projection. \item If $g$ is another lift of $F$, then $g-f=k\in\ZZ$. \end{enumerate} \end{proposition} @@ -255,7 +255,7 @@ \begin{definition} We define the set: \begin{multline*} - \mathcal{D}^0(\TT^1):\{f:\RR\to\RR:f\text{ increasing and}\\ + \mathcal{D}^0(\TT^1):=\{f:\RR\to\RR:f\text{ increasing and}\\ \text{ homeomorphism}, f(x+1)=f(x)+1\} \end{multline*} Note that we have the projection: @@ -264,15 +264,16 @@ $$ We can define a distance in $\mathcal{D}^0(\TT^1)$ as: $$ - d(f,g)=\max\{ \sup_{x\in\RR}\abs{f(x)-g(x)},\sup_{x\in\RR}\abs{f^{-1}(x)-g^{-1}(x)}\} + d(f,g)=\max\left\{ \sup_{x\in\RR}\abs{f(x)-g(x)},\sup_{x\in\RR}\abs{f^{-1}(x)-g^{-1}(x)}\right\} $$ \end{definition} \begin{lemma} - $\mathcal{D}^0(\TT^1)$ is a complete metric space. Moreover: - \begin{enumerate} - \item $f\to f^{-1}$ is continuous, $f\in \mathcal{D}^0(\TT^1)$. - \item $(f,g)\to f\circ g$ is continuous, $(f,g)\in \mathcal{D}^0(\TT^1)\times \mathcal{D}^0(\TT^1)$. - \end{enumerate} + $\mathcal{D}^0(\TT^1)$ is a complete metric space. Moreover, the functions: + $$ + \function{}{\mathcal{D}^0(\TT^1)}{\mathcal{D}^0(\TT^1)}{f}{f^{-1}}\quad + \function{}{\mathcal{D}^0(\TT^1)\times \mathcal{D}^0(\TT^1)}{\mathcal{D}^0(\TT^1)}{(f,g)}{f\circ g} + $$ + are continuous. Thus, $\mathcal{D}^0(\TT^1)$ is a topological group with the composition. \end{lemma} \begin{definition} @@ -285,16 +286,22 @@ If $0\leq \varepsilon<\frac{1}{2\pi}$, then $f_{\alpha,\varepsilon}\in \mathcal{D}^0(\TT^1)$. \end{lemma} \begin{proof} - Note that ${f_{\alpha,\varepsilon}}'>0\iff \varepsilon<\frac{1}{2\pi}$. Thus, $f_{\alpha,\varepsilon}$ is strictly increasing, and therefore it is a homeomorphism. + Note that ${f_{\alpha,\varepsilon}}'>0\iff \varepsilon<\frac{1}{2\pi}$. Thus, $f_{\alpha,\varepsilon}$ is strictly increasing, and therefore it is a homeomorphism. Moreover, $f_{\alpha,\varepsilon}(x+1)=f_{\alpha,\varepsilon}(x)+1$. \end{proof} \subsubsection{Rotation number}\label{ADS:rotation_number_section} - \begin{remark} + \begin{lemma} Recall that $f=\id+\varphi$ with $\varphi$ 1-periodic. And thus: $$ f^n=\id + \sum_{i=0}^{n-1} \varphi\circ f^i=: \id + \varphi_n $$ with $\varphi_n$ 1-periodic. - \end{remark} + \end{lemma} + \begin{proof} + Use induction on $i$ to prove that all the terms of the sum $\varphi\circ f^i$ are 1-periodic. The case $i=0$ is clear. Now, for the inductive step: + \begin{multline*} + \varphi\circ f^{i+1}(x+1)=\varphi\left(x+1+\sum_{k=0}^{i}\varphi\circ f^k(x+1)\right)=\\=\varphi\left( x+\sum_{k=0}^{i}\varphi\circ f^k(x)\right)=\varphi\circ f^{i+1}(x) + \end{multline*} + \end{proof} \begin{lemma}\label{ADS:lema1} Let $f\in \mathcal{D}^0(\TT^1)$ be such that $f=\id +\varphi$, with $\varphi$ 1-periodic. Let $m:=\min_{x\in\RR}\varphi$ and $M:=\max_{x\in\RR}\varphi$. Then, we have $m\leq M< m+1$. \end{lemma} diff --git a/preamble_formulas.sty b/preamble_formulas.sty index 9385b5e..210f855 100644 --- a/preamble_formulas.sty +++ b/preamble_formulas.sty @@ -303,7 +303,9 @@ \newcommand{\topo}{\tau} % symbol for the topology. Feasible options are: \tau, \mathcal{T}... \newcommand{\conn}{\mathrel{\#}} % connected sum. \mathrel gives the space of a relation (like +,-,...) while \mathbin gives the space of a binary operator (like =). \renewcommand{\S}{S} % S of the S ^ n (n-th dimensional sphere) +\newcommand{\Homeo}{\mathrm{Homeo}} % set of homeomorphisms \newcommand{\Homeoplus}{\mathrm{Homeo}^+} % set of orientation-preserving homeomorphisms +\newcommand{\Diff}{\mathrm{Diff}} % set of diffeomorphisms \newcommand{\Diffplus}{\mathrm{Diff}_+} % set of orientation-preserving diffeomorphisms %%% GALOIS THEORY