diff --git a/Mathematics/2nd/Mathematical_analysis/Mathematical_analysis.tex b/Mathematics/2nd/Mathematical_analysis/Mathematical_analysis.tex index 67351e3..9657d3f 100644 --- a/Mathematics/2nd/Mathematical_analysis/Mathematical_analysis.tex +++ b/Mathematics/2nd/Mathematical_analysis/Mathematical_analysis.tex @@ -175,7 +175,7 @@ \begin{theorem} Let $(f_n)$ be a sequence of continuous functions defined on $D\subseteq\RR $. If $(f_n)$ converges uniformly to $f$ on $D$, then $f$ is continuous on $D$, that is, for any $x_0\in D$, it satisfies: $$\lim_{n\to\infty}\left(\lim_{x\to x_0} f_n(x)\right)=\lim_{x\to x_0} f(x)$$ \end{theorem} - \begin{theorem} + \begin{theorem}\label{MA:uniformintegral} Let $(f_n)$ be a sequence of functions defined on $I=[a,b]\subseteq\RR $. If $(f_n)$ are Riemann-integrable on $I$ and $(f_n)$ converges uniformly to $f$ on $I$, then $f$ is Riemann-integrable on $I$ and $$\int_a^b\lim_{n\to\infty} f_n(x) \dd{x}=\lim_{n\to\infty} \int_a^bf_n(x) \dd{x}$$ \end{theorem} \begin{theorem} diff --git a/Mathematics/5th/Advanced_dynamical_systems/Advanced_dynamical_systems.tex b/Mathematics/5th/Advanced_dynamical_systems/Advanced_dynamical_systems.tex index 20b0d76..da16cc3 100644 --- a/Mathematics/5th/Advanced_dynamical_systems/Advanced_dynamical_systems.tex +++ b/Mathematics/5th/Advanced_dynamical_systems/Advanced_dynamical_systems.tex @@ -701,7 +701,7 @@ $$ \int_{\TT^1}\exp{2\pi\ii kx}\dd{\mu}=\exp{2\pi\ii k\alpha}\int_{\TT^1}\exp{2\pi\ii kx}\dd{\mu}\implies \int_{\TT^1}\exp{2\pi\ii kx}\dd{\mu}=0 $$ - where the equality is due to the invariance of $\mu$. So, we also have $\int_{\TT^1}P_n(x)\dd{\mu}=a_0$. Now consider the Féjer trigonometric polynomial that converge uniformly to $\varphi$ and use the \mnameref{RFA:domianted}. + where the equality is due to the invariance of $\mu$. So, we also have $\int_{\TT^1}P_n(x)\dd{\mu}=a_0$. Now consider the Féjer means, which converge uniformly to $\varphi$ (recall \mnameref{MA:fejerthm}) and use the \mcref{MA:uniformintegral}. \end{proof} \begin{proposition}\label{ADS:uniquely_ergodic} Let $F\in\Homeoplus(\TT^1)$ with $\rho(F)\notin\quot{\QQ}{\ZZ}$. Then, $F$ is uniquely ergodic.