From cb64d79886d347629c298055fc93e360b0768a3e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?V=C3=ADctor?= Date: Sat, 10 Feb 2024 14:28:33 +0100 Subject: [PATCH] added and updated introduction to control theory --- .../Differential_equations.tex | 2 +- .../Images/unstable_attractor.ipynb | 99 ++++ .../Images/unstable_attractor.pdf | Bin 0 -> 108562 bytes .../Introduction_to_control_theory.tex | 113 ++++ main_math.idx | 543 +++++++++--------- main_math.ilg | 6 +- main_math.ind | 508 ++++++++-------- main_math.tex | 9 +- preamble_general.sty | 1 + 9 files changed, 748 insertions(+), 533 deletions(-) create mode 100644 Mathematics/5th/Introduction_to_control_theory/Images/unstable_attractor.ipynb create mode 100644 Mathematics/5th/Introduction_to_control_theory/Images/unstable_attractor.pdf create mode 100644 Mathematics/5th/Introduction_to_control_theory/Introduction_to_control_theory.tex diff --git a/Mathematics/3rd/Differential_equations/Differential_equations.tex b/Mathematics/3rd/Differential_equations/Differential_equations.tex index 86046e5..c1a101e 100644 --- a/Mathematics/3rd/Differential_equations/Differential_equations.tex +++ b/Mathematics/3rd/Differential_equations/Differential_equations.tex @@ -746,7 +746,7 @@ \item If $\alpha(\vf{\gamma})\subseteq\vf{\gamma}\implies\alpha(\vf{\gamma})=\vf{\gamma}$, then $\vf{\gamma}$ is either a critical point or a period orbit. \end{itemize} \end{proposition} - \begin{definition} + \begin{definition}\label{DE:stability} Let $(\RR,\RR^n,\vf{\Psi})$ be a dynamical system and $K\subset \RR^n$ be a compact set. We say that $K$ is \emph{positively stable} if for all neighbourhood $U$ of $K$, there exists a neighbourhood $V$ of $K$ with $V\subseteq U$ and such that $\forall \vf{x}\in V$, ${\vf{\gamma}}^+(\vf{x})\subset U$. Analogously, we say that $K$ is \emph{negatively stable} if for all neighbourhood $U$ of $K$, there exists a neighbourhood $V$ of $K$ with $V\subseteq U$ and such that $\forall \vf{x}\in V$, ${\vf{\gamma}}^-(\vf{x})\subset U$. \end{definition} \begin{definition} diff --git a/Mathematics/5th/Introduction_to_control_theory/Images/unstable_attractor.ipynb b/Mathematics/5th/Introduction_to_control_theory/Images/unstable_attractor.ipynb new file mode 100644 index 0000000..4d8802f --- /dev/null +++ b/Mathematics/5th/Introduction_to_control_theory/Images/unstable_attractor.ipynb @@ -0,0 +1,99 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAGjCAYAAADpUIU9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADscUlEQVR4nOzddVxU2f8/8NfQIRIK2I2tqJgrdnd3rKtrd3eu3d2xxlpgrK7duraiEgqigAGIdNfMvH5/+OX+nAUV7gwr7uc8H4/7AOYyrzkMM/e+7zln7lWQJARBEARBEHIYve/dAEEQBEEQhIyIIkUQBEEQhBxJFCmCIAiCIORIokgRBEEQBCFHEkWKIAiCIAg5kihSBEEQBEHIkUSRIgiCIAhCjiSKFEEQBEEQciSD790AbajVagQFBcHCwgIKheJ7N0cQBEEQhEwgidjYWBQoUAB6el/uL/mhi5SgoCAULlz4ezdDEARBEAQZ3r17h0KFCn1x/XcpUqKiorBkyRLkyZMH4eHhcHNzQ7NmzTBlypQs5VhYWAD49Efmzp07O5oqCIIgCIKOxcTEoHDhwtJ+/Ev+9SIlKioKU6dOxbZt2zRuK168OB4+fAgXF5dMZ6UN8eTOnVsUKYIgCILwg/nWVI1/feLs0aNHsX37dly+fFm6zcrKCk2bNoWrqyv8/Pz+7SYJgiAIgpAD/etFSvXq1WFlZZXudhsbGwCfelUEQRAEQRAUJPm9GwEAJUuWBAC8fv060/eJiYmBpaUloqOjxXCPIAiCIPwgMrv/zhGf7nF1dUVERASuXLnyvZsiCIIgCEIO8d2KFD8/P7i6uuLhw4eIioqCv79/hsNAn0tOTkZycrL0c0xMTDa3UhAEQRCE7+W7nXG2RIkSmDJlCnbs2IFmzZrByckJbm5uX73PkiVLYGlpKS3iHCmCIAiC8N+VY+akDB06FNu3b8fr169RokSJDH8no56UwoULizkpgiAIgvADyeyclBxz7Z5u3boBAKZOnfrF3zE2NpbOiSLOjSIIgiAI/23/epHi5OSEZs2apbs97SPI3xryEQRBEAThf8O/PnHWzc0tw+GciIgIAEC1atX+7SZliUqlwsCBA3H79m3o6+tDT08Penp60vf6+vr45ZdfMGLEiK9eNOlLQkND0b17d0RGRsLAwEBj0dfXh7GxMSZMmICmTZvKav/Dhw8xadIkGBoawsjIKN1iZmaGsWPHwsHBQVb+gQMHcOrUKZiamsLExASmpqYaS65cudCzZ09YW1tnOZskVq1ahZCQEFhYWCBXrlzS8vnPVapUgaGhYZbzExMTsXXrVuTKlQtWVlawtrbW+GplZQV9ff0s56YJDg7Gw4cPYWtrCzs7O9ja2ur04piBgYFQKpXInz8/jIyMdJL5ueTkZBgbG+s8VxAE4Uv+9SKladOmGZ76/tKlSwCAHj16/NtNyhKFQoE+ffrg8OHDSElJ0VhXtGhRbNu2DS1atJCdb2VlhbZt22LSpEnp1jk6OmLHjh2oUaOG7HxHR0cUKFAAhw8fTreuZs2a2L59u+wCBQA6deqERYsWwdvbO9266tWrY8uWLbIKFODTc9+mTRtUr14dCQkJ6daXLVsW69evl1WgAJAKqSFDhmS43t7eHuvXr0e3bt1kFRZ2dnbYvHkzLly4IN1mbGwMW1tb2NraomDBgpg5cyZq164tq/1KpRJVq1ZFZGSklFegQAGNr82bN0fRokVl5R89ehTjx49H8eLFUaxYMRQrVkz6vnjx4ihatCjMzMxkZQPA9OnT4enpidKlS6NMmTIoXbo0Spcujfz582tdyCmVSkybNg12dnaoVKkSKlWqhIIFC+qsQAwLC8OxY8fg5OSESpUq6byY8/f3R1JSEsqUKSPr4OdbwsPDYWNjk21XkycprlQvyMN/2evXr9m1a1dGRkZq3AaAQ4YMyVJWdHQ0ATA6OlrHrdQUERHBw4cPs1+/frS1tSUAjUWhUHDs2LGMjY2Vlf/u3Tvu2LGDnTt3Zu7cudPlm5iYcMmSJUxJSclytlqt5suXL7lhwwa2a9eOuXLlSpdvYWHBjRs3UqlUysr38PDg2rVr2bZtW1pYWKTLt7S05ObNm2Xlq1Qquru7c8OGDezSpUuGz3+uXLm4YsUKJicny2r/8+fPuWPHDg4YMIAODg7p8o2MjDhlyhRGRUXJyg8ICODRo0c5adIkOjk5pcsHwG7dutHX1zfL+SQZHh7OK1eucNWqVaxatWqG+RUrVuSJEyeoVquznJ+SksLnz5/TxcWFBQsWzDDf3Nxc9nNEkjExMbx48SINDAwy/P9Wq1aNq1evZmpqqqx8kty/f79GrpWVFZ2dnTl8+HBu3ryZ9+/fl51Nkl27diUAGhoasmrVqvz111+5detWPnz4kElJSVplh4WF0cbGhtbW1mzdujV/++03XrlyRfY255+OHTvGfPnysWfPnty2bRt9fHxkvVa+ZNKkSezbty8PHDjAkJAQneWSpFKp5NixY/nHH38wIiJCp9kkGRwczB07djA0NFTn2STp7e3Nt2/fZks2SX748CHbsknK2q6Tmd9/f5dP96RdZNDKygpRUVHw8/PD0KFD0bVr1yzlZOcZZz08PHDmzBmcOXMGd+7cgVqtBvBp7kzLli1haGiIvXv3onz58ti5cyfq1KmT6WylUombN2/i/PnzOHfuHDw9PaV1BQoUQKtWreDl5YV79+6hUaNG2LZtW5Z6N2JiYnD58mVcuHABFy9eREBAgLSuSJEiaNGiBVxdXREZGYmuXbti3bp1KFCgQKbz379/j4sXL+LKlSu4cuUKQkJCpHWFCxdG9erVceLECQBAv379sGLFCtjb22c6393dHdevX8f169dx8+ZNhIeHS+tsbW2RL18+eHh4AAD69u2L5cuXI3/+/JnKTk1Nxf3793H79m38/fffuHPnjjTUCPz/3pS02zp37ozly5dLZ0T+lujoaNy7dw8PHjyQlo8fP2r8jkKhQNrbrl69elixYgVq1aqVqfygoCA8fPgQT58+xZMnT/DkyRO8ffv2i79fqlQpzJ8/Hz169MjUUJW3tzc8PT3x/PlzeHl5wcvLCy9fvkRqamqGv29hYYHRo0dj/PjxyJs371ezU1JS8Pz5c/j6+uLVq1fw9fWVvv/w4cMX79eiRQtMnToVDRs2/OrReExMDF6+fIm3b9/i7du3ePPmjcbX0NDQDO9na2uL4cOHY9iwYV99HX38+BFv377Fhw8fMlz8/f0RFBSU4X0bNmyItWvXwtHR8Yv5b9++RXh4OCIiIqQlMjJS+v7q1avw9/fXuI+enh4cHR3RsGFDTJ069Yvvs9TUVAQGBiI+Ph5xcXHpvsbFxWHevHka554qUKAAGjZsiEaNGqFhw4YoWbLkF5//+Ph4REREIDU1VVpSUlKk71++fIlBgwZJv1+tWjW0aNECLVq0wE8//fTN3s+oqCgkJydDoVBIi56envT9+vXrMXfuXOjr66N+/fpo164d2rdvn+n3bXh4OAwNDWFiYgJDQ0ONv5Mk6tSpg0ePHqFx48bo2rUrOnXqBFtb20xlp6amIiEhAbly5crwPfjmzRuUKlUKzs7O6Nu3L7p06fLNc4Z9LjExEfr6+l8c4t24cSN2796NgQMHok+fPlnuyU5ISICpqekX//cDBgxAyZIlMXjwYOTLly/TuZnef8sqgXKI7OxJcXZ2lo64qlWrxlmzZvHOnTtS1Th37lzOnTtX1hFSTEyMdMRoYGDAhg0bctmyZXR3d5eOXlq3bs1du3bJOpr566+/NI5w27Zty/Xr19Pb25tqtZpxcXEsXrw4T58+neVskhw3bpyUb21tzS5dunDz5s18+fIl1Wo1z58/z3LlyvHatWuy8itWrCjl29vbs3v37ty0aRO9vLyoVqs5c+ZMOjo68tatW1nO/vDhg8bRdP78+dm1a1euWbOGDx48YEpKChs2bEhHR0dZ7T948KBGvp2dHdu1a8fffvuNFy5cYEhICM3NzVmuXDmeOnUqy//fQYMGpesNaNiwIcePH899+/bxwIEDBMDChQtzx44dWe59K1asmEa+sbExHR0d2bt3by5atIj9+vWTesfmzJnD8PDwTGen9Zj+cylQoAAbNGjAQYMGsWzZsgRAfX199u7dm0+fPs10/o4dOzLM19fXZ5EiRejs7EwjIyPp9ipVqnDPnj1MTEzMVH7Pnj0zzE9b/tmLaGFhwZEjR9Ld3T1T+XZ2dl/Nz2ipVq0a169fz7CwsK9me3h4ZDkb/9cr1KFDBx4+fPir27q1a9fKyk97rbq6un71vdCuXTtZ2eXLl+e0adPo6en51efHzMws3es+d+7ctLOzY+HChWllZZXuNdWkSRNu3br1mz1Dd+/e1dge58uXj6VLl6aTkxMbNWrE9u3b09LSUuOxu3TpwuPHj2dq/7Jo0SLp9Va8eHHWqFGDLVu2ZN++fTlu3DhOmjRJI7tXr168dOkSVSrVN7NJsnHjxjQ2Nmbx4sVZt25dduvWjWPHjuWyZcu4f/9+jh49WtqX9ejRgzdu3MjUdi1H96ToSnb2pJw4cQKRkZFo2bJlhr0M8fHxMDc3l52/atUqlCxZEk2aNIGFhUW69VFRUVmqpj8XFxeHRYsWoUWLFqhTp0668fG4uDgAQK5cuWTl379/Hzdu3ECTJk1QpUqVdEcHAQEBKFCggOzJm3v37kVSUhIaNGiAMmXKpKvg7969i5o1a8qexDpr1iyULVsWdevWRbFixdIdNR06dCjTPQ//9O7dO2zYsAE1a9ZEzZo1UbhwYY18Hx8f3Lx5E7/88gsMDLI+Jezs2bO4f/8+qlatiipVqqBo0aIa+b///jtiYmIwZMgQmJiYZDl/xYoVSElJQYUKFVChQgWUKFFC43n4+eef4eDggFGjRmX59alUKjFs2DCUKlUKDg4OKFWqFEqVKiW9j5RKJRwcHNCuXTtMmDABxYoVy1K+m5sbduzYgSJFiqBo0aIoUqQIihQpggIFCsDAwAC+vr4oW7YsOnTogHHjxqFevXpZmiexZ88ePHz4EPnz50e+fPk0Fjs7Oxw/fhy9e/eGk5MThg0bhp49e2bpPTZu3DgkJSXBxsYm3WJtbY2VK1di3759sLW1Rd++fTFgwABUrlw5U9kfPnzA2LFjkStXLpibm2f4ddq0aXjz5g0UCgUaN26MXr16oXPnzpk68j537hx2794NQ0NDaTEyMpK+V6lUWLt2rfT7efPmRceOHdGlSxc0btz4m9uKRYsW4cGDByCpsajVapBESEgInj59qnGfChUqoE2bNmjbti3q1Knz1fdbx44dER8fL52LK21JSkpCcnIyIiMjkZSUpHEfhUKBqlWrolWrVhg3btwXexKfPXuGyZMnIyYmBrGxsYiNjZW+T+uh/xIbGxvMnTsXI0aM+GL7d+/ejd27dyM8PBxhYWGIiIj4Zi4AFCtWDL/88gsGDBiAIkWKfPH3hgwZgnv37iEoKEijV/trKlSogBEjRqBv375f3Ddndv8tihRB+A9hNk9QTEpKklX8ZEZcXBySkpK+OWwkl4eHBywsLLJc/GTW3r17UaFCBVSvXl3n2SkpKRg2bBg6dOiAVq1a6fzTW0+ePMGwYcPQu3dvdO/ePdPDp5m1efNmLF68GJ07d0bnzp3h7Owsq0j/kp9//hmHDx9Go0aN0LZtW7Rp0wbFixfXSbZKpYKjoyO8vLxQpEgRNGvWDM2aNUOTJk20eq2SRGJiInx9fVGzZk2kpKRAoVDA0dER9evXR4MGDVCvXr1MDyulUavViIqKQlhYGMLCwnDmzBksXrxYWq+vr4/KlSujdu3aqF27NurUqZPp6QRJSUn48OEDgoKCpGX//v149OhRut8tVqwY6tevj99++y3DIkgUKYIgCEKmpKamyv5UXGYEBASgSJEi2fLJJKVSifPnz6Nhw4aye4e/5vnz57h27RqaNWsGBwcHnR8EbN26FX5+fqhfvz6cnZ1l96BnRKlUon379jA1NUXt2rVRq1YtODk5aTUK8LnAwEBUqlQJ+fPnR9WqVVG1alVUq1YNVapU+WYPnChSBEEQBOF/WNruPbt6VyMiImBiYiLr1AOZ3X9/t6sgC4IgCIKQfbL73DRpZ4rPTjnm2j2CIAiCIAifE0WKIAiCIAg5kihSBEEQBEHIkUSRIgiCIAhCjiSKFEEQBEEQciRRpAiCIAiCkCOJIkUQBEEQhBxJFCmCIAiCIORIokgRBEEQBCFHEkWKIAiCIAg5kihSBEEQBEHIkUSRIgiCIAhCjiSKFEEQBEEQciRRpAiCIAiCkCOJIkUQBEEQhBzJ4Hs34EcTHh6O06dPIz4+HgkJCRkuv/zyC5o3by4r39PTE/fv3/9itkKhwMyZM1GyZElZ+Tdu3MCbN2+QmJiY4WJpaYlp06bBwsIiy9lqtRpXrlxBYmIikpOT0y0pKSmws7ND//79oa+vn+X8+Ph4vHz5EiqVCiqVCkqlMt1Xa2tr1K5dO8vZAJCUlISkpCQoFAqNRU9PT/peX18fhoaGsvIFQRCErBFFShbZ2Njg5cuXWLJkSbp1efPmxZ49e2QXKABQrFgxjBo1Cjdu3Ei3rmrVqjh06JDsAiWtjd27d8fHjx/TrWvbti127dolq0ABAD09PQQGBmLgwIEgmW59z549sXnzZlkFCgAYGxtj6dKlOHr0aIbr27dvj+3bt8vKBoCwsDA4OzvjzZs3Ga53cnLC7t27UblyZVn5169fx88//wwDAwMYGRnB2NgYxsbG0vf58+fHb7/9hmLFisnK37dvH06ePAkLCwtYWFggd+7c0vdpPzds2BDW1tay8vfs2YOYmBjkzZsXtra20ldbW1uYmJjIykyjVqtx/fp1FChQAIUKFUKuXLm0yvun1NRUKBQKGBiITZ4g/EjEOzYLQkJC4Orqips3b6Zb16xZM+zduxf58+eXne/l5YXDhw/j/fv36dZNmjQJCxcuhLGxsaxstVqNO3fu4OjRo+kKCBMTE6xevRrDhg2DQqGQla9UKnHjxg3cv38fpqamSEhIkNZZWlpi8+bN6N27t6xs4NNO5tatWxnuYC0tLbF+/Xr069dPdvvVajWCgoJQv3597N+/X2OdsbEx5s+fj4kTJ2q1kytWrBjKlSuHCxcupFvXt29frFq1CnZ2drLzO3bsiIULF8LX1zfdOgcHB6xdu1Z2gQIA1atXR+3atTX+t2ksLCwwceJETJs2TdZrVE9PD7dv38acOXMAAFZWVihcuLC0FCpUCBUqVECHDh2gp5f1UWqScHZ2RmRkJEqXLg0HBweNpXDhwrKLZwB4//49xowZg3LlyqFy5cqoXLkyHBwcdFYUPXnyBI8fP0atWrVQvnx5rdqakRcvXiBfvnxavT6+JjU1VfRACvLwBxYdHU0AjI6OzrbHCA8P586dO9m0aVPq6ekRAAHQ3t6eAGhoaMhVq1ZRpVLJyvf19eXChQtZsWJFKdvY2JhWVlYEwPz58/PixYuystVqNe/evcvx48ezUKFCUn7u3Lmpr69PAKxSpQqfP38uKz8lJYXnz5/nr7/+yjx58kj5JiYm0veNGjXimzdvZOXHx8fzxIkT7N+/P62traXMz5dmzZrx7du3svKjo6Pp6urKAQMG0M7OLsP8unXr0tvbW3b+yZMnOWLECDo4OGSY7+DgwMuXL8vKj4uL46VLlzhr1izWr1+fxsbG6fJz5crFZcuWMSkpKcv5KSkpdHNz45YtWzhgwACWK1eOCoUiw//BkydPspyvVqsZHBzM8+fPc/ny5ezVq1eGz5G5uTmnT5/OsLCwLD+GSqViQEAAL168yFGjRmWYD4ClSpXS6n0WGRnJfv36aWQaGxuzWrVqHDBgAFevXs0XL17IyifJpKQklipVSvqfNmrUiNOmTeOJEycYFBQkOzfNrVu3qKenx6pVq3L8+PE8deoUIyMjtc5NM2XKFLZs2ZLr16/nq1evdJZLfnr+J0yYwD/++CNb9gWRkZF0cXFhYmKizrNJ8sOHD0xISMiWbJKy903ZLbP7b1GkfMGhQ4fYtm1bGhoaShudqlWrctmyZfT39+dvv/3GMmXK0M3NLcvZMTExXLlyJatXry5lGxgYsFWrVty7dy+joqJYv359tmvXjh8/fsxy/qtXrzh58mQWLVpUY0Pfq1cvnjx5kjExMTQwMODkyZNl7bxu3LjBX375RaNwsLGx4aBBg3j+/HmeO3eORkZGsoo3tVrNffv2sWPHjjQ1NZXybW1t+euvv/Kvv/7itGnTaG5uzq1bt1KtVmcpPzIykmvWrGGTJk00/rfW1tbs3bs3Dx48yDp16tDc3JwbNmzIcvtfvnzJ+fPns27dulIhmFa4NW/enCtWrKCxsTGNjIw4Z86cLG/4bt26xalTp7J27do0MDDQ2CmWK1eOHTt2lH7u27cvAwMDM52tVqt59OhRTpgwgXXr1tV4/tN2ugULFpR+rly5Mi9cuJDp/KioKO7du5cTJkxg06ZNaWtr+8WiAQBNTU05adKkTL8H/Pz8uGvXLk6dOpWdOnVixYoVMyzcPl/Kli3LPXv2MDk5+Zv5Dx8+5K5duzhv3jwOGjSIzZs3Z7ly5ZgrV66vPkajRo14/PhxpqamfjX/4sWL3L9/P1evXs0ZM2ZwyJAh7Ny5M+vVq8dy5crR3Nz8i48xYMAAhoSEfDE7JiaG58+f57Fjx7h3715u2rSJy5cv55w5czhx4kQOHTqUFhYWGpkKhYLVqlXjxIkTefr06a9uK969e8fLly/z4sWLPHfuHP/66y/++eefPH78OF1cXLh27VqN7NKlS3Ps2LG8cOFCpt4DXl5evHPnDh89ekR3d3d6e3vz9evXfPfuHUNCQrh48WICoJGREdu0acPdu3czPDz8m7lpHj58SE9PT757947R0dHp3ve1a9empaUlf/31V16/fj1L24X4+Hg+efKEQUFBGb4G/P39mSdPHo4dO5ZeXl6Zzk3z4cMH+vn5MSUlJcP127Zt45gxY2QXhwEBAYyKivri+i1btvDly5dZzhVFipaaNWsmbcTmz5+f7mj6woULjIuLk5UdFxdHc3NzKhQKNmrUiNu2bWNoaKjG75w4cSLLO+A0ly9fljby3bp1o6urK+Pj46X1ISEhso/eSXLq1KkEwLx583LIkCG8ePGixhvk+vXrdHd3l52fVrwVL16cEyZM4M2bN6lUKqX1mzZt4uvXr2Vlh4WFST1iFStW5NSpU3nr1i2NjcfPP/9Mf39/Wfmurq7ShrhKlSqcMmUKL126JG2I/fz82LBhQ9lH1cOGDZN2II6Ojhw9ejRdXV2lHdTBgwdZtWpV/v3337LyP+/xKVOmDPv3789Nmzbx0aNHTE5O5vjx41mwYEHu2bNH43+SGW/evNHYURUoUIAtW7bklClT+Mcff9DDw4POzs40NjbmuHHjGBwcnKX83bt3a+SbmJiwYsWK7Ny5M6dNm8YdO3ZIRUvNmjV54sSJLO1s+vTpk644MDMzY5kyZdi0aVO2bdtWo8AaPHhwlt4Hab2zGS25cuWipaVluudvxowZmdr5eHl5fbWQ+tJSpEgRTp06lU+fPv3q9mjdunWy8gGwcOHCdHFx+Wp++/bts5yrr6/PZs2acevWrfzw4cNXnx8zM7N097ewsGDBggVZvnx55s+fX2Nd0aJFOWPGjEz1Qt+9e1ej8MubNy/Lly/PRo0asWfPnhw7dqxGwe7s7Mx9+/Zlundl4cKFBEA9PT0WLlyY9erVY79+/Th79mzu3LmTe/fulR67Y8eOvH79epb2LQ0bNiTwqVe/cePGHDlyJDdu3MgrV64wKCiIy5Yto56eHnv16kUPD49M52Z2/60gM5jh+IOIiYmBpaUloqOjkTt3bp1mP3r0CEZGRqhUqZLseQ5fc+7cOVSpUkWrOSxfolQqcfz4cbRu3VrnExABwM/PDwEBAahfv362TES8efMmLC0tUbly5Wx57l1cXFCjRo0vTlAlKftxo6KicObMGTRt2hT29vbp1icmJsLExER2/pMnT/D+/Xs4OztnOH/Az88PRYsWlT1n4eTJkzAzM0ONGjUyzD958iSaN28OMzOzLGeTxMaNG1GhQgVUqlQJtra2GusTEhIwc+ZMTJo0CQULFsxy/uvXr3HhwgWULl0apUuXRqFChTTmr1y/fh1Lly7FtGnT0KBBgyz/Dy5cuAA/Pz+NuTLW1tZSzqpVq7BhwwaMHDkSgwYNgo2NTZbyN27cCJIaE5PTFhMTE/Tp0wdHjx5F27ZtMWjQILRs2TLT77+IiAisW7cOuXLlgrm5ebqv5ubm6NSpE968eQNbW1t0794dvXr1Qp06dTI1B+ju3bs4ffo09PX1NRY9PT3o6+sjPj4e8+fPl36/aNGi6NixIzp27AhnZ+dv/h27du2Ch4cHUlNTkZKSgpSUFI3v3717h6dPn2rcx87ODs2bN0eLFi3QtGlT5MuXL8NskpgwYQJiYmIQHR2NmJiYdN/HxcVleF99fX0MHjwYixYt+uL/29vbG6tXr0ZISIjGkpiY+NW/2draGv3798eQIUNQvnz5L/6eq6srjh49ioCAALx58ybDD0X8U9WqVTF+/Hj06NEDRkZGX/3dmTNn4vbt23jx4kWG2cbGxkhOTpZ+7tixI2bOnInq1at/NTez+29RpAiC8D8hKSlJ608hfY27uzsqVKig80mtwKeJp5s3b0aPHj2+uLPVxoMHD7Bp0yb07t0bTZo00fnBx9KlS3H48GGpMHF0dNTpAUj37t3x559/wtnZWSpMKleuLGuS9T8plUo4Ojri+fPnMDY2Rq1atVCvXj3Ur18fderUkfVpSJKIi4tDSEgIPD090aVLF6jVaml9iRIlUKNGDVSvXh01atSAs7Nzpl9X8fHxePv2LQICAhAQEICLFy/i5MmTGf6uk5MTNm7cmOnTNkRERODFixcay7179xAZGZnud1u2bImZM2fC2dk5wyxRpAiCIAg5QkRERJZ7ljIrOTkZV65cQYMGDWBubq7z/AcPHuDy5cuoV68eatSoofNCd+bMmXj+/LlUlFSvXl1nz1Vqaipq1KiBwMBAVKxYERUqVJC+VqhQQevHCQ4ORuXKlREWFgYAsLW1RYkSJTSW9u3bI2/evOnuK4oUQRAEQfgfFhcXh4SEBK1ObfA1d+/eRUhICEqUKIHixYtnqVcps/tvcZ4UQRAEQfgPypUrV7bMS0xTp06dbMtOI67dIwiCIAhCjiSKFEEQBEEQciRRpAiCIAiCkCOJIkUQBEEQhBxJFCmCIAiCIORIokgRBEEQBCFHEkWKIAiCIAg5kihSBEEQBEHIkUSRIgiCIAhCjiSKFEEQBEEQciRRpAiCIAiCkCOJIkUQBEEQhBxJFCmCIAiCIORIokgRBEEQBCFHMvjeDfiRpaamIiwsDKGhoRpLs2bNULZsWa2y4+Li8OHDB2kJCQnBhw8fYGBggMmTJ8PMzEx2dlJSEj58+ICgoCAEBwdrLA0aNED//v2hUChkZZNEbGxsutzg4GCEhoZi1KhRqF69uuy2A5+e948fP0rPSUhICEJCQhAVFYUxY8agQIECWuV//neEh4cjLCwM4eHhiIqKQtu2bbPt0ufJyckwMDCAvr5+tuQLgiD8aESRkkUeHh7o3bs33r9/j6ioKI11RkZG2LRpk1YFyubNmzFlyhTEx8enW+fs7AwXFxfZBUpKSgp69eqF48ePp1unUCiwePFirQqUt2/folmzZnj58mW6ddbW1jhy5IhWBcr169fRs2dPhISEpFtXqFAhHD9+XKsCZfv27Vi/fj3Cw8MRHh6O1NRUaZ2dnR0OHz4su0AhieXLl8PNzQ2xsbGIiYnR+JqYmIjZs2djypQpsvKVSiX279+P+Ph4pKamIiUlJd3XcuXKYeDAgdDTy3oHanJyMoKCgqCvrw8DA4MvLnKyBUEQvog/sOjoaAJgdHT0v/aYSqWS06ZNIwCNpXDhwnzw4IHW+cHBwaxRo0a6/OHDhzM5OVmrbLVazatXr9Lc3Fwj29LSkmfOnNG67cnJyVy5cmW6tleoUIGvXr3SOj8uLo79+vVLl1+/fn2GhIToJN/JySldfp06dfj+/Xut89+/f898+fKlyy9SpAhv376tdf7x48epr6+fLl+hUHDq1KlMSkqSna1UKtmtW7d02WmLnZ0dDx8+TLVaLSs/IiKCzZs3Z/369dmuXTv27duXI0eO5IwZM7hs2TJu3bqVN2/elN3+wMBArly5kocOHeLNmzf5+vVrJiYmys7LqP0xMTE6yxOE/7rM7r9FkZJJb9684bx581ikSJF0G+gmTZrw48ePsrNVKhUvXbrErl270sDAQCPbyMiIO3fu1KrtMTEx3Lx5MytVqpSu7WXKlKG3t7dW+QEBAZwxYwbt7e3T5Xfs2FHrjfezZ884YsQI5s6dO13+mDFjmJKSIjtbrVbz4cOHHDZsGC0tLdPljx07Vuvi0NPTk9OmTcvwtdOxY0eGh4drlR8cHMzNmzezadOm6YqU4sWL89atW1rlK5VK3r59m1OmTMmwQBk4cKDWf0NSUhJXrFiRYb6xsTFnzpzJ2NhYrR5jwIAB6bLz5MnDypUrs3379rx3757s7ODgYObNm5cFCxZk48aNOWLECK5bt44XLlxgQEAAVSqVVm2/ceMGf/75Z27cuJH37t3TaYFFkvfv36e7u7vW7fwSbd6jwn+TKFJ0ICUlhceOHWOrVq2oUCgIgCYmJuzXrx87d+5MAJw+fTqVSqWs/I8fP3L58uUsVaqUtNEsXbo0V69ezbJly7JAgQK8e/eu7Pa7u7tz+PDhzJUrFwFQT0+P7dq144EDBwiAbdq0YVRUlKxspVLJM2fOsG3bttTT0yMA5sqVi8OHD+fs2bMJgPPmzZO90YuPj+eePXtYu3Zt6bnJmzcvJ0+ezLZt29LExIR79+6VlU2SYWFhXLt2LStXrqyRP2HCBBYqVIjm5uY8fPiw7Pz3799zxYoVdHR0lPJNTU3ZpUsXqfjcuHGj7J6HN2/ecM2aNXR2dpZemwBYsGBB6ftBgwbJLhCDg4O5Z88edu/endbW1hkWDyVLluSVK1dk5UdHR/PcuXOcOXMm69evTxMTkwwfo0uXLvTz88tyvkqloo+PD48cOcLp06ezZcuWtLOzy7CXqU+fPvT19c3yYyiVSvr7+/Py5cvcunUr69Wr98WepubNm9PHxyfLj0F+KqTDw8M1DjIMDAxYrVo1DhkyhDt27OCTJ0+0KgQ8PDyop6dHW1tbduvWjVu2bKGPj4/s1+c/zZ07l61ateLWrVsZFBSkk8zPrVq1infv3tVZez+XlJREf39/nef+rxNFipZmzZqlsVFzdHTkxo0bGRkZSZKcOnUqjx8/Lis7JCSEvXr1opGREQHQ0NCQPXv25LVr16Q3Wd++fRkcHCwr/86dO6xbt67Udnt7e86cOZNv3rwhSb58+ZIzZsyQXVzt3LmTxYsXl/IrV67MLVu2SDvEvXv38sSJE7KylUolR48erdGr0ahRIx4+fFgarhg/fjwfPXokK//t27fs1q2b9Nzr6emxTZs2PHbsmNRj0qBBAz5//lxW/vXr19m4cWOpcNDT02OLFi24b98+xsTE0NfXl6VLl+aTJ09k5e/cuTPdcGCNGjW4dOlS+vr68tChQ7Szs+OpU6eynK1SqTh9+nRWqVIl3VBO//79eejQIQ4bNoz6+vqcNm0aExISspT//v17jhkzhlWrVpUK27SlbNmyHDx4MEuXLk0ArFSpUpYLoHv37nHkyJH86aef0g1pAqCtra1GT1Pnzp3p6emZ6fxjx45xzJgxbN26NcuUKUNDQ8MvFiVpBVCnTp14586dTOVv2LCBU6dO5S+//MLWrVvTycmJhQoVkl6rX1oqVKjA9evXMyIi4ovZYWFhXLduHZcsWcLZs2dzwoQJHDZsGPv378+uXbuyVatW0sHM50vBggXZt29f7tmz56vDhZ6enty+fTt37tzJ3bt38/fff+e+fft44MABHjx4kBs2bNDIrVmzJhctWkRPT89MFRZXr17lkSNHeO7cOd6+fZuenp58+/Yto6KiqFKpuHr1agKgg4MD58+fz9evX2fqOU9z4sQJXr16ld7e3ul67NRqNatUqcJ27drx/PnzWT7wiomJ4enTp/ny5UumpqamW+/t7c0hQ4bIHhL38/P7au/a48ePterpf/bs2VcLy4z+pswQRYqWOnfuTAsLCw4dOpSPHj1K90bSZnw/KSmJefPmZYkSJbhs2bIM51PILSBI8sGDBwTABg0a8PDhw+mGK7Q92li0aBGNjIzYt29f3r59O12etvkNGzZknjx5OHHixAyPPuW+KchPrxlTU1OWKlWKixcvznCuSVxcnOz8c+fOEQCdnJy4Zs2adIVmaGioVsMWEyZMoEKhYL169bh27Vqp8Exz69YtrTZIlStXpr6+PuvVq8dFixbRzc1NY6M8d+5cPn36VFb2hw8fCID6+vqsUaMGJ0yYwBMnTkjtVavVrFChAjdv3izrf5zWQwiApUqVYrdu3bho0SKeOXOGQUFBDAkJoUKhYMuWLWUVuT///LOUb25uTkdHR3bp0oVTpkzh9u3buWzZMml4aujQoVnuOfm8FyztecqfPz+rVKnC5s2ba/TKmZiYsH///hm+/zLy4sWLrxY6X1pq1KjBVatW8d27d1/NX7dunax84FPvsYuLy1f/jnbt2n01w9TUNN1tP/30E7ds2fLNoUi1Wp2uJy937twsV64cmzRpwv79+2vMVXNwcODq1au/WhR+7tatW9J9DQ0NWa5cOXbs2JHTpk3jnj17eOfOHRYsWJB6enrs3bs3PTw8MpWbZu7cuVK2k5MThw0bxl27dtHd3Z1KpZJXr16lhYUFFy5cKGvb9tNPP0nF8Lhx4/jXX39p9NBOmjSJ+/fvz/J2P7P7bwVJ4gcVExMDS0tLREdHI3fu3DrNfv/+PaytrWFubq7T3DSvXr1CiRIlsu3TEK9evUKpUqWyJTsqKgqpqamwtbXNlvy3b9/Czs4OJiYm2ZLv4+OD0qVLy/4U09colUq8evVK64+gf0lQUBD09PSQL1++bMn39PREoUKFYGVllS35t27dQtWqVTP8lFRqaipiY2NhY2MjKzssLAw+Pj6oXLkyLCws0q13d3dHTEwMnJ2dZeW7u7sjNjYWpUqVgp2dXbrXz8KFC5GcnIxRo0bB3t4+y/nnz5+HkZER7O3tYW9vDxsbG43tQ/PmzREYGIihQ4eiX79+sLa2znR2bGwsTp8+DTMzM5iZmcHc3Fz63szMDCYmJqhevTrevn2LSpUqoWfPnujRowdKliyZqXwvLy/cu3cParU6wyUiIgILFiyQft/KygotW7ZEmzZt0KJFi29uS86cOQMfHx9ER0cjJiYGMTExGt8HBgbi/fv36e6XO3duNG7cGL/99hsqVqyYYbZSqcSmTZsQFBSEwMBAjSUhIeGLbTI1NUWfPn0wcuRIVKlS5Yu/9/r1a+zbtw8+Pj7w9vbGy5cvkZiY+NW/t3379pgxYwZq1ar11d8DPr1ujh07hocPH8LT0xMqlUpaZ2ZmhooVK+LBgwcAgHz58mHevHkYNGgQDAwy9+HepUuX4vz587hz5470iUcDAwPUrl0bzZo1w7t377Bz5040atQIW7ZsQZkyZTKVm9n9tyhSBEEQdECtVmfbQYdSqcTDhw9Ru3btbCmuHz58iFOnTqFnz56oUKGCzvPnzp2LkydPonXr1mjTpg1q166d6Z1kZnTv3h0uLi6ws7ND/fr1Ua9ePdSrVw+VK1eWfd4hkoiJicG7d+/QsmVLBAYGSussLS1RpUoVVKlSBVWrVkWnTp0yvQ9Sq9V49+6dVLS4ublh7969Gf5u48aNMWPGDDRu3DhT//eEhAQ8ffoUDx8+lJaMTglRunRpLFmyBJ06dcr06yk+Ph63bt3CpUuXcPnyZbi7u6f7HSMjI0yZMgUzZsyAqanpV/NEkSIIgiDkCBEREbJ7yL4lOjoarq6uqFevHhwcHHRexLm4uGDfvn1SQVKlShUUL15cZ48zdOhQbN++HXZ2dihVqhRKliyJUqVKaXxvY2Mj6/FUKhVatGiBK1euZLi+devW2LRpE4oVK5bl7JCQEJw9exZDhw7VOKcUAJQoUQKbN29GixYtvnh/UaQIgiAIQg6mVCrh6emJEiVKZMs+7O7duzh+/Djs7e1hZ2cnfbWzs4OtrS2MjIxkZ6vVavTs2RN//vknTExM0i3Gxsb4+eefMXz48Ax7GEWRIgiCIAhCtuCnD97IHuLM7P5bnBZfEARBEIQsUSgU2TI/6p/EhTYEQRAEQciRRJEiCIIgCEKOJIoUQRAEQRByJFGkCIIgCIKQI4kiRRAEQRCEHEkUKYIgCIIg5EiiSBEEQRAEIUcSRYogCIIgCDmSKFIEQRAEQciRRJEiCIIgCEKOJIoUQRAEQRByJFGkCP8ZKSkp2ZqvVquzNV8QBEHQ9K9fYDAqKgpLlixBVFQU/Pz8EBERgenTp6Nr167/dlN+KHFxcfD390dYWBgaNmyokws7kURoaCh8fHzg4+MDX19f9O/fHxUqVNA6OzU1Fa9evYKnpyc8PT3h5eWF/PnzY8WKFTAxMdG63W/fvoW7u7u0eHt7Y/bs2Tp5HanVavj5+cHT0xMeHh7w8PBAcHAwNmzYgCpVqmidD/z/58fb2xve3t549+4dpk6diqJFi+okPw1JhIeHIyAgAIULF4a9vb1O8wVBELLTv1qkREVFYerUqVi2bBmsrKwAAG5ubnByckLXrl3h4uLybzZHltjYWLx//x6BgYEICgpCUFCQxve2trbYunUrChQokOVstVqNq1evws/PD35+fvD395eWsLAwFCxYEGfOnJFdoLx58wZ//PGHVJT4+PggKioKAGBoaIh9+/ZpVaCcOHECR48ehZeXF7y9vZGamiqt69y5M1auXAljY2NZ2ampqZg3bx5u3LgBDw8PxMTESOuMjY3h4uKCdu3ayW57SEgIZs2ahWfPnsHLywsJCQnSuvz58+PSpUtaPTfPnz/H/v374e3tjRcvXuD169dQKpUAABsbG5w9e1arAsXPzw9Pnz6Fv78/AgICNJa4uDhMnToVixcvlp0PfHp9RkZGIiwsDGFhYQgNDZW+j42NxciRI2W97gVBEL6I/6IpU6YwMjIy3e3Lli0jAF66dClLedHR0QTA6OhoHbXw29zc3Jg/f34CSLd06dKFcXFxWuW7urrSzMwsXXaVKlX4/v17rbJVKhUXLVqULtvCwoKXL1/WKpsk4+Li2KZNm3T5AwYMYGpqqtb5fn5+6Z57MzMznbSdJE+dOkU9PT2N/GLFivHVq1daZyuVSk6ZMiXdc1O4cGE+f/5c6/z379+zevXq6fL19fW5fft2rfMvX76c4esSAIsUKcIHDx5olX/z5k2OGzeOI0eO5ODBgzlgwAD26dOH3bp1Y8eOHdm/f3++efNGdn5sbCzj4+OpVqu1aqcgCLqR2f33v1qklChRgiVKlEh3++PHjwmAQ4YMyVLe9yhSHj9+zLZt26bbUM+fP58qlUqr7KCgIM6cOZNWVlYa2a1bt2ZMTIxW2ampqdy/fz8rVKigkW1nZ8fHjx9rlU2Svr6+HDBgAPX19TXyx40bp/Xzolarefz4cVauXFkj29LSkrdv39a67YmJiVy3bl26Aqhs2bJ89+6d1vnx8fFcu3YtCxYsqJFfrlw5vn37Vut8pVLJ48ePs06dOhr5uXPnznLh/yXBwcHs0qVLutd98+bNGRoaqnV+SkpKhu8rAGzVqhUDAwO1yn/06BHNzMyoUChoYWHB/Pnz08HBgVWrVmW9evXYu3dv+vv7y86/d+8ely1bxsOHD/Pu3bsMDAzU+nX/OV1mCUJOkCOLlKZNm9LKyird7a9fvyYAdu3aNUt5/1aRkpiYyL1797JWrVrShlOhUBAAzc3Nefz4ca3ynz59yp9//pmGhobSztfExIQAOHLkSK16IRITE7l582YWL15carezszMBsGTJklr3Evj4+LB///5ScVKyZEnWr19fKty0OXJVq9X8888/WbVqVY3equLFizNPnjxaF1eJiYlcv349CxQoQAA0MTHhkCFDCIBVq1blx48ftcqPiori4sWLaWtrSwA0NjZmw4YNCYC1a9dmWFiYVvkxMTFcu3YtS5QoIT0/efLkIQAWLVqUnp6eWuWnpqby1KlT7NChQ7riEwBnzZpFpVKp1WMEBwdz69atbNasGQ0MDNL1km3dulXr3o+oqCiePn2a9erVS/c3KBQKDh48WOv/dXJycrqeLENDQ5YoUYKNGjXi8OHDtSpIr1y5wjJlyrBXr15csWIFr1y5woiICK3a/Ln79+/z4cOHohgS/jU5skj5EhcXFwLgsmXLsnS/7C5S/Pz8OGXKFGnDD4BNmjTh8ePHOWrUKBYrVozu7u6yslUqFc+ePcumTZtK2cWLF+e6desYExPDwoULc/Xq1bI30NHR0Vy2bBnt7e2lDeagQYPo4+PDhw8f0snJiSEhIbKySfLFixfs06ePNDzi4ODAvXv3MjU1lfPmzeO6detkZ6vVav711190cnKSnptOnTrx6dOnJMkOHTrQy8tLdn5iYiI3bNggFSfGxsYcO3Ysg4KCGBMTw7p162Y4LJlZoaGhnDVrFi0tLaVCdtKkSQwKCuLZs2fZsmVLrYYFAwICOHHiRObOnVv63/br149ubm5csGABa9WqxQ8fPsjO9/X15fTp0zV6lsqVK8eVK1eyZcuWtLS05KlTp2Tnv3nzhmvXrmW9evWkYh8AK1WqJL3XfvrpJ/r6+srKTytKJk6cSCcnp3RDeGlLzZo1ZQ1TqdVqvn37lmfPnuWyZcvYt29fVqlShcbGxukew8TERHptZZVKpeKHDx/o5ubGM2fOsGzZsunyixcvzi5dunDx4sVa9Wi9evWKBgYGzJMnD3v06MHdu3frpBcxzZYtWzht2jTZ28tvef78uRjK+8H8UEVKWg/Lt3YMSUlJjI6OlpZ3795lS5GiVqvZvXt3aQNqaWnJsWPH8sWLF9Lv7Nq1S/ZG4c2bNyxXrpy0ofnpp5/o6uqqcVSqzTyLkydPSkNGZmZmHDdunMYG58OHD1oNH02ePFl6bsqUKcP9+/dr9PZo00OQmJio0WPVvn17urm5afyONm1/+vSpNOxibGzMMWPGaAwlpKamalVA7N27V5q7YWVlxTlz5mg8H0FBQUxJSZGdP3r0aKlXI0+ePJw5c6ZG+69du8aEhARZ2YmJiWzUqJH03Jubm3PgwIG8c+eOtAMYP3687OLBy8uLNWrU0NjJ1qhRg0uXLuXLly9JkkWKFOHixYtl9dCcPHkyXVGip6fHGjVqcPLkyTx27BgVCgXz5s3LXbt2ZbnXYOXKlaxbt65UfH6+GBgYSL2VcouT0aNHs127dqxevToLFCiQYe/VPxcbGxtOmjTpm/+ToKAgjh49mkOHDuUvv/zC3r17s2vXrmzfvj1btmzJRo0aMVeuXOnyy5cvz3HjxvHs2bNMSkr6Yv7du3c5a9YsLlu2jJs2beLevXt57NgxXrx4kXfu3OG5c+c0itElS5YwICAg08/NsWPHuHHjRp4+fZru7u6MiorSWD916lQ6Ojpy9+7dTExMzHRumh07dvDs2bMZFvdqtZqLFy+W3duWkJDAnTt3frHoS0pK0qrAev36NW/cuJFtRdqTJ0+07vXNyA9TpFy6dIkA6OLi8s3fnTt3boZv1OzoSRk0aBAdHR25fft2rSfD/pNSqWTp0qXZrVs33r17V6fZ5KchmDx58nD27Nk6mS/wT9u2bWO5cuV48OBBrbv7M9KtWze2adOGDx8+1Hl2QkICixUrxtGjR2s9ETkjDx48oJ2dHZcuXZotr8uFCxeyXLly3LZtG+Pj43WeX69ePdauXZs7d+7MsBjUZkMYGRlJY2Nj1qtXj2vWrEk3EVapVEq9ZXIcP35coyg5c+aMxv/g7t27HDVqlOxhkrShwGLFirFdu3acPn06Dx48SA8PDyYnJ/PAgQNa9ZwULVpUKqzy58/PatWqsW3bthw8eDDnzJnDli1bStu8OnXqcN++fZneIb948eKbBU9GS6lSpTht2jQ+evToq//7NWvWyMqvW7cuN2/e/M3tVIsWLdLd19LSkpUrV2a7du005jPZ2tpyzpw5DA4OztRzk5ycTCMjI+n+BQsWZLt27Th37lz++eeffP/+PXv27MlcuXJx7ty5WX5fnz9/XsquUKECJ0yYwIsXL0r/u5CQEDZq1Ig+Pj5Zyk0zduxYAp+G2n/77bd076vXr1/L3k4rlUqWKVOGuXLl4syZMxkeHi4rJyOZLVIUJInvyNraGsuWLcOQIUO++bvJyclITk6Wfo6JiUHhwoURHR2N3Llz67RdiYmJMDEx0cn5SDKSlJSk9flCviY5OVn2x32/RalUQqFQQF9fP1vyU1JSYGRklC3Z/0Z+dj73ycnJMDQ0hJ5e9pyHMT4+Hubm5tmSDQDR0dGwtLTMluykpCSkpKR8cVugVqu1et4+fvwIU1NTWFhYZLj+woULqFy5MvLnzy8r/+XLl8idOzdsbW0zfG/Vr18f5cqVw/Dhw7N8vp7ExER4eHjA2NgYRkZG0pL2MwBUrFgRgYGBKF++PLp27YouXbqgUqVKmdoGvnv3Di9evEBcXJy0xMbGSt9/+PABhw8f1riPkZERateujQYNGqBZs2Zwdnb+4mM9ePAAz58/x5s3bzSWt2/fapzq4HOGhobo1asXxo4di2rVqn2x7cnJyTh16hQeP34MNzc3uLm5ITw8XON3DAwMpFMG5MmTB9OnT8eIESNgamr6zefm7du3OHToEC5cuIC///5baq+pqSkaNmyIFi1aYO7cuUhKSsKsWbMwZcqULG2frl69iq1bt+LPP/9ESkoKFAoFmjRpggEDBqBTp05wcXHB/v37cfDgQdjZ2WU6F/j03KxduxbLly9HREQEcufOjXHjxmH8+PHSaUQePnyIGjVqZCkX+LT/trS0/Pb+W2dlkQxdu3bN8jyUz32PT/cIgiD825RKZbZu527fvs3ffvtNJx+Hz8icOXOkieNz587ValjycyqVioGBgWzVqpVGL4tCoWCpUqXYsWNHzpo1i69fv850plqt5ps3b3jixAnOmjWLrVu3TjepG//X47J9+/YsfbAhJiaGp06d4ogRI1iyZMkMe5fKly8v61OL4eHh3Lhxo8YE7ty5c0sfZMifPz9v3ryZ5Vzy07524cKFtLa2lnqx5s2bx6ioKDo5Ock6zUGOH+6ZMmWKVgUKKYoUQRCEH8GDBw9kzRXJDC8vL7Zs2ZITJ07knj17+PDhQ50O0R8+fDjdZOjixYvzp59+YpcuXbhhwwbZn8D09fXN8NxSADh8+PB0c28yy93dnRMmTKCdnZ1Gpr6+PpcvXy572DYqKooLFiyQ5mVZWVlJE/hXr16dpawcPdyzfft2REVFYcqUKeluz8ywT5pMdxcJgiAIQhaRxJ9//gkLCwvkz58f+fPnh5WVlc6mAdy+fRvdu3cHSRgaGkqLgYEBDA0NUbRoUaxatQolSpSQlX/8+HF06dIl3e0dOnTA77//Lg3ZZFVUVBTWrl2L1atXIzY2Vrp9wYIFmDVrVqaen8zuv//1a/dcvnw5wwIFgHSKdkEQBEH43hQKBTp27Jht+XXr1kVgYGC2ZEdFReH27dvo168fIiIipCUyMhJnzpxBtWrV4OLiAicnpyxnW1paomDBgunmA82ZMwexsbFYtmyZzgq5f7Unxc/PD82aNUPTpk2lCi6tMPHz88PQoUOzdIE40ZMiCIIgCFlDEnFxcYiPj0e+fPmyfP+UlBTcunVLusCrh4cHvLy8kJSUBAAYNmwYNm3a9NWJ6pndf/+rRUrJkiXh5+f3xfWPHz/+6izsfxJFiiAIgiB8f0qlEq9evZKKFkdHx692OuTIIkXXRJEiCIIgCD+ezO6/s+dkC4IgCIIgCFoSRYogCIIgCDmSKFIEQRAEQciRRJEiCIIgCEKOJIoUQRAEQRByJFGkCIIgCIKQI4kiRRAEQRCEHEkUKYIgCIIg5EiiSBH+E8LDwxETE6Pz3JSUFFy7dg3nz5/XeTZJvHz5EmvXrsXr1691ng98av/169fx8ePHbMkXBEHITqJIESQqlQrx8fE6zUxISMCtW7ewcuVKHDlyRGe5UVFROHXqFMaPH48qVapgzJgxyJUrl06y/f39sWXLFnTo0AF58uTBiBEjUKtWLZ1kJyYm4vz58xgzZgwcHBxQpkwZREdHo2TJkjrJJwkvLy+sXbsWbdq0gY2NDf7880/Y2dnpJD+NWq2Gl5cXdu3ahdGjR8Pf31+n+YIgCMB3uAqykHXx8fF48+YN/P39kZiYiM6dO3/1wk3fQhLv37+Hp6entHh5eSF37txwdXWFubm5rFy1Wg1vb2/cv39fWjw8PKBSqdChQwe4uLjIbnNsbCxu3bqFa9eu4dq1a3jy5AnUajUAoHnz5tizZ4/s54QkLl68iLNnz+L8+fN4+fKltM7Ozg5nz56FtbW17LZHR0fjjz/+wNmzZ3H16lUkJiZK6/r06YM5c+bIzgY+9SKdP38eFy9exOXLlxEUFCSt69q1K1atWqVVPgBERkbi/v37uHv3Lu7du4f79+8jOjoahoaGOHnyJIoXL671Y6RRq9UICgrCq1ev4Ovri1evXqFx48Zo0aKFzh5DEIQfgyhSsig6Ohrv3r1DaGgoPn78mO6rWq3GsmXLULp06Sxnq9Vq7N+/Hy9evIC/vz8CAgLg7++P0NBQAED58uVx5swZ2TtjDw8PjBgxAu7u7umGRpo0aYKTJ0/K7o1Qq9WYMGEC1q1bl25dmzZtcOTIERgaGsrKBj7tiDds2JBu2KVGjRo4duwYjIyMZGcrFApYW1vjxo0bGgWKqakpTp8+rfUOOHfu3LCxscGdO3c0ChRnZ2fs2rVL60uaGxkZwc3NDQcOHJAKt7T8/fv3a1XQAsC7d+/Qtm1buLu7a9xuYGCAo0ePonXr1lrlx8bGYsmSJfD29oavry9ev36t8TwtWrQIzZs31+ox/kmlUiEhIQHx8fGIj49HQkICypUrBwMDsUkUhByFP7Do6GgCYHR09L/2mP7+/ixTpgwBpFuqVq1Kf39/rfIfPHjAfPnypctu2rQpIyMjtW7/+vXr02V36NCBiYmJWmf7+Pike25atGihk+zQ0FD++uuvGtllypThx48ftc5Wq9Xcs2cPbWxspGyFQsETJ05onU2SkZGRHDRokEbbS5YsydDQUJ3kh4aGcsCAARr5ZcuWZXh4uE7yVSoVd+7cST09PSlfT0+PR44c0Uk+SV68eJHGxsYaf4OBgQH37t2rdbZareb48eNZqFAh2tjYpHscGxsbnjx5UqvHSEpKolqt1rqtgvC/IrP7b1GkZIFareaDBw/YrVu3dDv6n3/+mQkJCVrlP3jwgD179qS+vr5G9uDBg5mSkqJV9vPnz9mrVy8qFAqN7H79+jE1NVWr7I8fP3LkyJE0MDCQdmBphZW2z4lSqeTWrVtpbW0t7dwBsGDBggwICNAqmyR9fX3ZuHFjAqCJiQmbNGlCAFy7dq3W2SR5/Phx5s+fXyocqlatSisrK3p7e2udrVaruWvXLqm4KleuHK2srJgvXz6ti+U0169fp5OTk1Q0pBVw+/fv10l+UlISd+3axbJly2q8Li0sLHjx4kWdPAb56fWfN2/edO/bxo0b8/3791rn//HHHzQ2Nmb+/PlZsWJFNmjQgJ07d+bgwYM5depUrl69mhEREbLzQ0JCmJSUpHU7BSGnEEWKDkVGRnLDhg10dHTUONIGQENDQ27evFn2UZRSqeSxY8fo7OwsZTs4ONDCwoIAuHz5cq2O0Dw9PdmjRw+pveXKlePEiRMJgKNGjaJKpZKdHR8fz0WLFkltLVKkCA8cOMBffvmFDRs2ZHx8vOxskrx//760gzQzM+PixYuZlJTEAgUK0MPDQ6vslJQULlmyhCYmJgTAJk2a0NfXl+fOnePo0aO1yibJ4OBgdunSRdq5z5o1i4mJiZw0aRKvXr2qdb6Xlxfr1asnFVeLFy9mcnIyGzVqRDc3N63zvb292b59e+k12blzZ/r6+tLU1JQ7d+7UOj8qKorLly9ngQIFpMK2c+fOBMD8+fPzyZMnWj/G+/fvuXr1atasWTNdcWJgYMAlS5ZQqVRq/TgfPnzgiRMnpAL6n0vr1q3p5eWl1WM8e/aMpqamrFKlCgcOHMiNGzfyzp07Wr/H0rx7946xsbE6yRKEzBBFipbUajVv3rzJfv36STsyPT09tm7dmidOnODEiRNZoEAB3rlzR1Z+TEwM165dy+LFi0sbs0aNGvH06dNUqVQsVaoUXV1dZbffw8OD3bp1k4qT8uXL8/Dhw1Qqlbx58yZnz56tVWG1Z88eFixYkABoaWnJ5cuXS8M6R44cYVxcnOy2pw3tpLW9S5cufPPmjbRe2w3+vXv3WKlSJamrf+/evdJzERUVpdWOK613w8rKigBYo0YNPnv2TFofExOjVdvj4+M5Y8YMGhoaEgBbtmzJ169fS+u17RUIDQ3lqFGjpF6TGjVq8ObNm9L6gwcPapUfFBTEKVOmMHfu3FKBNXLkSL5+/ZqRkZEsV66cVj1kYWFh3Lp1Kxs0aCC9fhQKBRs0aMD58+dLvXH379+XlZ+SksKHDx9yw4YN7N27t8b7959L5cqVeenSJVmPExMTQx8fH16/fp0HDx7kqlWr6ODgkO4x9PT0WL58eY4aNUqr4cOXL1/S3NycHTt25L59+7Tq9flSvjbbBOG/RxQpWvq8Z6Nw4cKcN28e3759K63fvXs3g4ODZWX7+/tLG2lDQ0P2798/3ZGjNj0Fv//+u9T2ChUq8OjRoxo9JsnJybKzSUrDXYaGhhw3bhzDwsK0yvtcTEwM7ezsCIClS5fmhQsXdJZNkleuXJF2Xn379tXJnJbPzZw5kwBoamrKVatW6eRIPY1arWadOnUIgPny5eORI0d0Og8iLCxMKq6KFCnCP/74Q6uetn+6fv06jYyMpOJwzpw5Gs9/QkKCVvNoNmzYIBVXaQXW6tWrpcLt77//Zv/+/WUXiiNGjKCpqalGkZArVy42adKEM2fO5Jw5c6SeoF27dmX5f9+yZUs6ODjQ3Nz8i4XPP5fq1atz165d3+xRef/+Pdu2bctOnTqxe/fu7NOnDwcMGMDBgwdzxIgRHDt2LO3t7TV6mpo3b85t27bxw4cP32z7jRs3OHToUC5fvpzHjh3jkydPNJ7nGzdu0MbGhrNnz85U3j8dOHCAa9eupbu7e4avySdPnmj1Xtu0aRMfPXok+/5fk5qayt9//13rYfUviYiI0Lpn+WtCQ0OzZahRFClamjJlCjt37sxz587pdEdDftrZNG/enDNnzmRQUJBOs8lPQw21atWii4uLTncyaU6dOsXu3bvz1atXOs8myRkzZnDJkiXZ8sZITU1l586def78eZ1nk58K0Pbt22v0bujSwYMHOWrUKEZFRWVL/vDhw7lkyRKt5xJlJCEhgTVr1uS6deuyZWjh+vXrrFChAhcuXJjha1Pbv2nChAksU6YMBwwYwG3btvHZs2ca24aVK1dyzpw5sv+2kiVL0tLSkmXLlmXjxo3Zp08fTpo0iatXr+ahQ4fYvXt3qQAeOHAgHz58mOlsT0/PTBc+/1xMTU25YMGCr06AX7JkSYb3tbW1Za1atdizZ0/p4MDY2JiDBw/mixcvMt3+2rVra2R2796dW7ZsoY+PD9VqNRctWsTq1avzwYMHmc5M8/79e2keXbVq1bhly5Z0+5SstPWfNm3aJB0wXr58WXZORlQqFRs0aEALCwvZvXZfc+fOHebNm5fz5s3TebYoUrQkZuoLwo8lu9+z3yr4tZ3c/rUeTpVKxdatW3PNmjWyhmJSU1P58eNHBgYG0t/fny9fvqSXlxefPn3Khw8f8tatW8yTJ49UCJQpU4Zjx47l2bNnMzXvJTo6mg8fPuThw4e5aNEiDhw4kA0aNGDhwoXTTdb/fGnXrh1v3rz5zf+dj48Pt2zZwu7du6ebAF2wYEHWqlVLGtobMmRIlnp3k5OT6erqyhYtWkhtNTMz48CBA3n37l2q1WpWrlyZu3fvznTm596/f8++fftK7e3UqRP9/Pyk9doOAe/Zs4cGBgY0MDDgvn37tMr6p/DwcNrb29PQ0JCenp46zRZFiiAIwn+ESqXK1iLs+PHj7NSpE7dt26aTT819LjExkfPmzUtXoFhZWbFOnTocOHAgr1+/nuk8lUpFd3d3rl27lh06dKClpWW67Dx58nDHjh1Z7kn29/fnrFmzpAndAFixYkVpCHrYsGGyh8vv3LnD6tWrS71JM2fOZGxsLLdv387169fLykxz4cIF6QMMCxcu1OlrxcXFhQBYq1YtnY4qiCJFEARB+O5iYmLYo0cPjh07llu3buX169cZEhKisx3p69evpR30P5datWrx8ePHWc5MTU3lqVOn2LZtW43zAwFg7dq1ZU9QV6lU3L17tzT/p2DBgmzZsiUBaH1OoCdPnkinOxgyZAhTU1Pp5+endQ+IWq1mx44dCYBr1qzRKutzmd1/K0gSP6iYmBhYWloiOjoauXPn/t7NEQRBEP5FJLFy5Ur4+/vDzMwM5ubmMDMz0/jewsICzZo1k3VW6oiICDRv3hyPHz/WuN3e3h5Hjx5F/fr1ZbU7JiYGCxcuxNq1a5GamgoA0NPTg6urKzp16iQrEwDevn2LVq1a4fnz52jTpg0aN26MEydO4MaNG1qdeTooKAjly5dHamoqPD09dXIZjMzuv0WRIgiCIAgZcHV1xc2bN/Hx40dpCQ0NRVhYGPT09LBq1SqMHj1a1qUt3r9/jx49euDOnTvSbUZGRjhz5gyaNm0qu82RkZHo1KkTbty4AYVCAZLYuXMnBg0aJDsTAHbu3InBgwejWbNmuHDhAv744w/07dtXdp4oUgRBEAQhG6hUKkRERODjx48oVqxYli/KShIHDhzAX3/9hVu3biE4OFhaZ25ujkuXLqFOnTqy2kYSly5dQqdOnZCQkAAAsLa2hre3t1ZXQyeJJk2a4Nq1axg8eDD++OMPhIWFwdTUVFaeKFIEQRAEIYcjidevX+PWrVvSEhYWhhs3bqBy5cpZzvP19cXkyZPx559/atzer18/7Nu3T3Y7Y2JicOPGDbRv31667dy5c2jZsqXsvMzsv7W7PKogCIIgCLIpFAqUKlUKv/zyC3bv3g1fX188f/4cUVFRkNOH4ODggJMnT+LFixf49ddfpbk4+/fvx5UrV2S38/z58+jWrZvGbWfPnpWdl1miJ0UQBEEQ/qOCg4OxYcMGbN68GXZ2dnB3d4eJiYmsrHv37qFDhw74+PEjAKBEiRJ49eqVrDk5YrhHEARBEAQAQGxsLHbs2IHcuXPj119/lZ0TEBCANm3a4Pnz5wAAb29vlClTJss5YrhHEARBEAQAgIWFBSZMmKD1p3yKFSuGO3fuoFmzZgCyf8hHFCmCIAiC8D9CztDMP1laWuLMmTMYOnSoKFIEQRAEQchZDA0NsWXLFnTs2FH6qHN2MMi2ZEEQBEEQ/rMUCgVGjhwp61NImSV6UgThO4qLi0NISEi2ZL969QonTpzIlmwASEhIwKNHj7ItXxCEH4MuhpC+RBQpgvAVcXFxcHFxQWxsrE5zX7x4gTFjxqBp06Y6/WQaSdy+fRudO3dGlSpVUKlSJZ1lpwkICMDkyZNRsmRJ2WebzAySePjwIaKjo7PtMQRByNlEkSL80FQqFR49eoRt27YhJSVFJ5kpKSk4deoUevXqBXt7e7x58wYWFhZa56ampsLV1RWNGzdG+fLlsWnTJqxfv14nO3qlUgkXFxfUqVMHzs7OOHHiBGbPno1SpUppnQ18KhiuXbuGTp06oWTJkli5ciVGjRqFChUq6CT/88d5/Pgxpk6dihIlSmDfvn2wtLTU6WMIgvAD0dl1l7+DzF7qWfh+VCoVfXx8eOjQIe7evVsnl2d/8+YNd+zYwe7du9PGxobGxsa8deuWVplKpZJXrlzhr7/+Smtra+my7B06dNC6zYGBgZw3bx4LFCigccn3GTNmaJVLkrGxsVy3bh2LFy+uke3o6MiUlBSt8+Pi4rht2zZWrFhRI79q1ao6ySc/XQr+yZMnnD59OkuWLCk9Rp06dZicnKyTx/jS4/r7+/P06dOMj4/PtscRBCG9zO6/xcTZ/2FKpRKBgYHw9/eXlkaNGqFRo0ay8lQqFXx8fPD48WO4ubnBzc0NT548QWxsLCpUqIArV67IHrt8/Pgxfv/9d1y6dAk+Pj7S7QqFAi4uLnB2dpaVCwAhISFo3749Hjx4oHF78eLF8fvvv2s13qpWq3H8+HHs3r0bQUFB0u2VKlXCnDlzZOemiY2NRWRkpMa8FoVCgR07dsDQ0FDr/FevXuHatWvw9PSUbjMwMMCePXt0kh8SEoJOnTrh7t27Grfb2dnBxcVFOqW3tuLj4+Hp6Ylnz57B3d1d+pqQkIADBw7AzMxMJ48jCIJuiSJFx0hCpVLBwEDeU+vv74/3798jIiJCY4mMjERERARy586NJUuWIE+ePFnOjoiIwMyZM/Hy5Uv4+/vj3bt3UCqV0volS5agYcOGstpNEitWrMDMmTOhVqs11lWqVAlXrlyBra2trGwAKF++PIyMjDQKFABYvXo1unTpIjsXAOzt7bF3717Url1bmv9gbGwMV1dXWFlZaZWtp6eH9u3bY/fu3Xj79i2ATzv5ffv2wdjYWKts4FPbk5KSND4COGbMGNSoUUPrbACoUKECbGxsNG6bOXMmHB0ddZJvb2+PXbt2oVatWtK8H319fRw5cgQFCxbUyWP8+eef6NGjB5KTkzVuNzIywrFjxzQumCYIQg7zr/TrZJPvMdwTFxfHVq1asWjRoixQoABtbW1paWlJMzMzGhoa0tbWlseOHZOd//jxY9ra2mp0ractbdu2ZXh4uFbtP3/+PPX19TVyjY2NeeTIEa1ySdLb25tOTk4a2VWqVGFoaKjW2WfOnGGxYsU0ssePH691LkkeOnSIuXPnJgCamJgQALdu3aqT7Fu3bkn/z9atWxMA58+fr5PsxMRE9ujRgwBYtGhR9uvXj0WKFGFsbKxO8iMiIti0aVMCYOnSpVmjRg1WrlxZp0Mwx48fp42NDQFQT0+PALhy5Uqd5ZOfhsR69+6t8doxNTXlxYsXdZKvVqv522+/8ddff+XQoUM5cuRIjhkzhuPHj+ekSZM4bdo0bt68mampqTp5PEH4L8js/lsUKVmkUql49OhRKhSKdEVEu3btGBwcLDs7Pj6e+/fvZ5UqVTRy9fT0uGTJEqpUKtnZHz9+5Pz582lnZ6eRnTdvXt6+fVt2Lkm+ffuWgwYNkoqftK9OTk5aF1WBgYHs2rWr9DwMGjSIANitWzetng/y087rl19+kYqTzZs3c/r06ezbt69O5s5s376dhoaG1NPT44oVK6hWq9m6dWudzOUIDQ1l3bp1CYDVq1dncHAw//77b/71119aZ5Pky5cvWaZMGQJg06ZNGRERwZUrV/Lx48c6yY+NjeWvv/5KADQyMuLKlSs5cuRIdu3aVSfPPfnp/bRy5cp0Rb+FhQVv3rypk8dI4+3tTXNz8wwPLoYNG8aoqCit8mNjY3X2vAhCTiCKFB1KTU3l1atXOWrUKBYsWDDdRihXrlzctWuXrI2IWq3m7du3OXjwYOloHgANDAwIgPb29rx27Zrstj9//pyDBw+Weghy5crFXr16SUfHr169kp398eNHjh8/nsbGxgTAEiVK8MCBAxw9ejRr1qzJyMhI2dlKpZIbNmyghYUFAbBatWp8+PAhVSoVGzduzMTERNnZ5Kceq9KlSxMAK1asSA8PD5Lk3bt3GRcXp1V2SkoKR44cSQC0tLTkuXPnpHXaZpOfCohSpUpJE3vTMnW1E7t69ao0eXjkyJFSD4CuelAePHggtb9cuXJ88uQJSfLixYuMiYnROj8xMZHr1q1jvnz5CIBmZmacNm0aFy5cSGtraz548EDrxyDJkJAQ7t27lz179pR6gz5fSpcurbNi6MWLF8yXLx/btm3LxYsX8/r162Kyr/BDE0WKlpKSknj27FkOGjSIefPm1TgK69WrF/v27UsArFevHv38/LKc//79ey5ZskQ6Wk0rSCZNmkRPT0/Wrl2bDRo0YFBQUJaz1Wo1L1++LA0vAGChQoW4YsUKRkZG0tPTk/Xr15fdyxEdHc25c+cyV65cBMD8+fNz8+bN0k7M1dVVqyNHNzc31qhRQyqq1q5dq9FVrs2OXqVScdWqVTQ0NCQAjhgxggkJCbLz/ik0NJSNGjUiAJYpU4be3t46yybJv//+m3ny5CEAjh07lkqlUqf527Zto4GBAfX19blx40adZiuVSi5cuFAqwEeNGqXT5z45OZlbtmxhoUKFpN6xiRMnMiQkhCR54sQJPnv2THa+Uqnk3bt3OXv2bFavXl2jILGzs5N6tgwMDDhz5kzZhXRiYiIDAwPp6enJmzdv8uTJk9yzZw8dHR01HlNfX59OTk4cPXo0Dx06pNWwalBQEG/evCl6a4R/jShStJS2kwRAGxsb/vLLL/zrr7+kDc+cOXO4YsUKWTuJwMBAafzd0NCQnTt35unTpzV2xBs3bpQ9hr1r1y6p7dWrV+ehQ4c0hhiioqKYlJQkK5sk27dvTwC0trbm0qVLdXpEFx0dLfUoderUie/evdNZNkmePn1a+p+ePHlSp9kkOWTIEAJgy5YttepJykhKSgpLlChBhULBdevW6TSb/HS0rqenRysrK53N1/jc3r17pR36mTNndJ4/btw4afho9OjRsgr8r2nRooXGEGydOnW4YMECPnr0iCqVihs3bmSNGjVkF0IVK1akqalphkNGX1qMjIzYvXt3nj179qvbi5CQENaqVYu9e/fmrFmzuGfPHt68eZPv37+nSqWiUqmkvb09a9asyaNHj2Z5u3bnzh0OGTKE165dy/C+2hY/x48fz5bXTJoTJ05o3Tv7JSqVSqse629lZ2dh6eHhofMDoTSiSNHSypUrOWLECF6+fDnDN7+2O+ZBgwZx7dq1OplU+k9RUVHs0aNHth0Z/f3335wxY4bOd8Jpdu7cyVOnTmVLdtokR10XP2mioqK4bNmybHtjP378OFuKqzT79u3Tee9PGqVSyVmzZkk9G7r26tUrDhs2LNv+t+vXr2e/fv146NAhhoWFpVvv6emp1f/9p59+YsWKFVm/fn126NCBv/zyCydOnMhFixZxy5YtbNeuncbBx6ZNmzLdG/rw4cMM59Gl9TiVL19eY8iqePHi3LBhQ6Z7LceOHSvdt0CBAhw3bhzv378vbX/OnTvH33//Xdb2KDExkfb29tKBy5s3b7Kc8TVHjx4lALZv315n5/5Jo1arWa1aNdrb22fLOX82btxIIyMjHj58WOfZYWFhtLCwYL169bJlPyKKFEEQhP8IpVLJOnXqcOLEidL8qaxKSkqit7c3z549yw0bNnDcuHFs3749K1So8MUeHBsbG86aNYsfPnz4anZycjL/+usv9u3bVxoGTpunNmPGDKkXrWfPnrKGgh8+fCj1bpuZmXHp0qUaO31t5jLFx8ezXr16BMDevXvr/ABjxIgRBMCDBw/qNJckFy1aRADZcuAyefJkAuCSJUt0nk2KIkUQBOE/IzU1VedH+Z+7e/euRk+LsbExK1WqxO7du3POnDk8ceJEpnfe8fHxdHFxYZcuXaRJ9Z8vxYoV4507d7LcRqVSyS1bttDKykqadJ32oYImTZowIiIiy5lpoqOjpXlGgwcP1mnPgaenJwGwbt26OstMM3XqVALQ6sMVGQkMDKSJiQnt7e11Mtk/I6JIEQRBEL5JrVZzxYoVXLFiBf/66y++evVKZ70J0dHR/P333zV6V9Im/S5YsEDW44SEhHDAgAFSVt++famvr09nZ2etJmKHhYWxQoUKBMAJEyZIhYoudtINGjQgAD59+lTrrM8NGzaMAHR2aoA0w4cPJwBu2LBBp7mfE0WKIAiC8F2pVCppMnlGS7169WTPMbl161a6a0p17NhRq5PmBQUFSdePmj9/PgMCAjhixAjZeWnS5r0MHjxY66zPpZ1OQpcTc1+/fk0DAwMWLVpUqw9YfEtm998KksQPKiYmBpaWloiOjtbp5e4FQRAE7ZFEbGwsEhISEB8fj/j4+HTfGxsbo0OHDtDT08tStlKpxIoVKzBjxgyN24cMGYKtW7fKvuZWQEAAnJ2dERgYiOrVq+PZs2fw9fVF0aJFZeUBn66AXqxYMURFRSEwMBBWVlYgqdV1wQCgbdu2OHPmDEJDQ5E3b16tst69e4fChQvj559/xr59+7Bnzx4MGDBAq8yvyez+W1y7RxAEQcgWCoUCuXPnzpaDyNevXyMqKgpOTk5wc3ND2vH29u3bUbBgQdkX8CxWrBhOnz6N2rVr49GjRwA+Xdds69atsttqaGiIIUOGYN68edi7dy+KFy+OwoULo2rVqrIzAUjXGtPF89u9e3fMmDED+/fvR5kyZdC3b1+tM3VB9KQIgiAIP7SIiAjcuHEDV65cwZUrV+Dt7Y1t27ZhyJAhWc568OAB2rZti9DQUOk2Q0NDrXtTgoODUaRIEdjb2yMyMhIHDx5Ehw4dZGU9fvwYZcuWxU8//YSXL18iMTERkZGRsLa2lpWXkJAACwsL8NMUEOzevRs9e/aEiYmJ1r09X5LZ/XfW+tcEQRAEIYexsbFBp06dsHHjRrx48QLv37+HhYUFoqKispxVs2ZNPH36FD///LN0W2pqKhYtWiS7fYcOHULdunWhp6eHwMBAJCQkIDAwUHaer68vSpcuDX9/fygUCjRv3hw7d+6Unefu7g61Wi31Rg0cOBCTJ0+WnadLokgRBEEQ/lMKFiyIXr16wcrKStb9CxQogN9//x0PHjzATz/9BADYs2cP/P39ZeX16tULrVq1QkpKinSbNkVKvXr1EBQUhNjYWCQmJuLy5cvo1auX7LwnT55o/DxkyBCsX78+23pRskIUKYIgCIKQgRo1auDvv//GwYMHkS9fPq16U9auXYuGDRtKPwcFBcnOKliwIIoXLy793LhxYxQqVEh23udFyoABA7Bly5YsT2TOLjmjFYIgCIKQAykUCvTq1Qs+Pj4oUaIEPnz4ICvH0NAQLi4uUnGhTU8K8Kk3JU2/fv20ynJzcwMA9OnTBzt37swxBQogihRBEARB+CYzMzPMmDED+fLlk52RN29enDp1Crly5dJZkWJmZobOnTvLzklNTYWHhwe6d++O33//Hfr6+lq1S9dEkSII/1GJiYnZkuvi4oJnz55lSzbwqRvc3d092/IF4XuqWLEiDhw4gODgYK1y6tevDwDo1KkTLCwsZOe8ePECbdq0wYEDB2BgkPPOSiKKFEH4j4mIiMCIESPw+PFjneZGRUWhb9++mDlzJipXrqzTbADSRx9r1aqFIkWK6DxfEHKKDh06YOLEiYiPj5ed4eDgADs7O62HeiwsLHD48GEYGhpqlZNdRJEiCN9JQEAAVqxYoTHjXxsqlQrbtm1D6dKl4enpCWdnZ53kAsCVK1dQqVIl/PHHHxgyZIjOZ/0HBASgRYsWGDRoEDp06CD7UxmZRRJXrlyR9RFVQdCFGTNmwNjYWPb9FQoFevTogSZNmmjVjuLFi8PIyEirjOwkihRB+AaSCA8P11ne/fv30b17d5QsWVJnG4i7d++iZs2aGDZsGMLDwzFr1iwdtPTTkNG4cePQtGlTvH//HkZGRjo9VbZarcaGDRtQsWJFXLp0CQAwevRoneX/U2xsLDZt2oTy5cvj6NGj2V4MCcKXKBQKrYdX5s+fnyOHaHQq264e9C8QFxgUsktycjIvXrzIUaNG0dHRkT4+PlrlKZVKurq68qeffpIuhtahQwetLwn/4cMHjSvCAmDNmjV1cqn5R48esVy5chrZvXr10jo3jbe3N52dnTXyW7VqpbP8zz1//pwjR46khYUFAbBIkSJiuyEI31Fm99//8RJM+K+Ljo6Gu7s7nj59ipIlS6J169aysyIiInD27FmcOnUK58+fR2xsLPT19XHu3DmULl1aVmZiYiK2b9+OdevWaZwIysLCAps2bdJq2CQyMhJDhgzBmTNnNG6fPXu21sMxSqUS9+7dg729PV68eCHdPnToUK1y0yQnJ+PAgQMICwvTuH3s2LE6yQc+DX+dPn0aGzduxJUrVzTW7dq1S1xKQxB+BP9S0ZQtRE/KjyEhIYF+fn68ffs2vby8ZGWo1Wq+ffuWp06d4oIFC9i5c2eWKFFCOgLv3bu37Eu0p6amcvjw4dTX1093KfkNGzbIyvy83Tdv3mSlSpU0cjdv3qxVbprw8HCWL19eyq1SpYpOelFIMjY2lhUrViQAGhgYsGzZsjrLJsmYmBiN50XX+UqlkidPnpT+hrRl6NChOnsMQRDkET0pQoaSk5OlJSUlJcOvFSpUkHWhqvfv32P16tX48OEDgoODpa9pV+rs3Lkz9u7dK6vdKSkpWLFiBTZs2JBu3cCBA7F9+3bZn+83MDDA8uXL8ffff8PDw0O6fejQoRg5cqSszDQKhQLu7u7w8vKSbqtbt65OeiTi4+PRtm1bPH/+HD169ICrqytmzZqlk0mtJDFw4EB4enpi4MCBsLW1hb29vc4mzKpUKvTq1QseHh4YOHAg3r17h86dO+t0Qq6+vj4UCgUCAgKk24oWLYoVK1bo7DGATz1az549Q0xMDGJjYxETE5Pu+759+6Jp06Y6fVxB+J/w79RM2eN79aRcv36dZ8+e5f379+nr68uIiAiqVCqdZEdFRXHw4MEcOHAgR4wYwfHjx3P69OmcN28ely5dyjVr1vDixYuy8w8ePEg9Pb10PQYAaGZmxm3btml1NLthw4YMs3/77TetniOlUskDBw4wT548GrnDhw/X+rm/f/++Rm8EADZs2JApKSla5SqVSo4fP54AaGNjwy1bttDIyIjPnz/XKpf8NGemZcuWBMDOnTtTqVRy+vTpOnsdLl26VJrfkpiYyKCgIIaFhekkmyTHjRtHAGzQoAGTk5N548YNxsXF6SxfrVZzyZIlVCgUNDIy4pQpUwiAly9f1tljpElJSWHPnj0zfN1bWlrS1dVV548pCD+6zO6/RZEig5ubG01NTTU2Rnp6esyTJw8dHBw4ZswYxsTEyM7fv39/hhs8Q0NDzpo1iwkJCbJyU1NTefnyZVapUiVddu3atenr6yu7zX5+fpw2bRrt7Ow0ci0sLHjq1CnZuWq1mseOHWOFChWk59nY2JgAOGHCBK0KqsTERE6dOlUq2gYOHMilS5eyZMmSWu+Q4+Li2KFDBwJgqVKl6OPjQ7VazS1btmiVS5IqlYq9evUiADZu3JhJSUnS7bpw/vx5KhQK2tnZ8d27dzrJ/NyWLVuk50WXhU+axMRE9unThwBob2/PO3fuMDU1lVOmTNH5YymVSl64cIG9e/dO956qVasW/f39df6YgvBfIIoUHUtNTeXjx4+5ceNG9unTh9bW1uk2SkWKFOEff/yR5Z1FcnIyb968ydmzZ7N27doZ9nQ0bNiQL168yHK7U1JSeP78ef7666/peiHwf3MNfvvtN1nzOZRKJf/880+2atWKCoVCKkrq1q1LACxdurSsNpOfipMzZ86wWrVqBECFQsFevXrRx8eHjo6OnDlzplYFyr1791i2bFkCYKFChXju3DmS5N9//611T0dQUBCdnJwIgHXr1mVoaKhWeZ9Tq9UcNWoUAbB69epaFcMZefXqFa2trWlgYMCbN2/qNJskL126RH19fVpZWdHb21vn+UFBQaxZsyYBsGrVqnz79q20TldFnFqt5uPHjzl+/Hjmy5dPei8ZGRlJ30+ZMkXrnrjPJScnMyIiQmd5gvC9iSJFSx8/fuSpU6c4ffp0NmzYkGZmZul27p/3FixevDjTPRxqtZqenp5cs2YN27RpQ3NzcylLoVDQyclJ2oHa2tpy3759WdohJyUl8fTp0/z55581iqk8efJw0KBBPHv2LE1MTFimTBk+fPgwy89NYGAgFyxYwMKFC2tM2Ny2bRtjY2O5a9cutmnThlFRUVnOJsmrV69qfFS3Y8eOdHd3l9afOHFCVi756Sh78uTJUiH466+/ym5nRjw8PFikSBHp47qJiYk6yybJ+fPnEwDLlCnDjx8/6jQ7Li5Omsi6ceNGnWaT5IsXL2hpaUkDA4NsGXZ59OgRCxYsSADs2rWrToePSNLf35+LFi3S+Fi2hYUFf/nlF165coWrVq1i3rx5efbsWVn5X3uPq9VqOjk5sXv37jx79qzsSeKCkFOIIkVL/zx/Q6lSpdivXz9u3ryZT5484c6dO6mnp8ehQ4fyw4cPWcqOiorS6C0pVqwYBw8ezCNHjkhH3U2bNuXgwYMZHh6e5bYfOXJEyrazs+OwYcN4+fJlacMWFBTEUaNGMT4+PsvZJNm/f38CoImJCQcMGMD79+9rbGD9/PyoVCplZScmJkpHpy1btpRVRH3NtWvXCICFCxfm+fPndZpNkqNHjyYAzpo1S2dH7mni4uJYtmxZFipUiG/evNFpNvmpF8nMzIwDBgzQ6ads0qxevZoAuH37dp1nk2S/fv0IgPPmzdP5c0+S9erVkw5Q2rVrxyNHjmgcmBw7doyBgYGy8x0cHGhjY8OSJUuyRo0abN68OXv06MHhw4dzxowZbNKkifS+LlCgAKdOnZrpXr+YmBg2adKEx44dy5bnxsfHhzt27NB5LvmpQHvy5InOi/I0jx490nlBm8bPz48uLi7Zkq1Sqbhw4cJs6fEkP20PWrVqleX9W2aJIkVL27dv5/Tp03nq1KkM3xz79++nh4eH7Pxp06Zx8+bN9PX1zXCHoE12bGwsR48ezevXr2dYLGi7A3r8+DHXrFmTbd3PJ0+e5K1bt7Ilm/z0v9Nl78nnUlJSeObMmWzJJj/18GXHMEma58+f67z353MPHjzItuz4+HjZvRiZcerUKW7atEmnw3efa9KkCUuWLEkbGxtp+DQzS61atbhly5avvh9dXFyk3y9Xrhz37dunMRyVkJAgu3hRqVRSD9zu3btlZXzNtm3bCIDr1q3TeXZCQgINDAxYrVo1nWcnJyezRo0aBMDr16/rNDs0NFSaOO/k5KTVNv2f93306JGUDWh/GoYvydFFSmRkJLt27ap1hSnOkyIIwn+RSqViZGQk/fz8+PjxY166dInVq1fXKE7s7e3ZuXNnrly5knfv3pUmUH/J06dP2bNnT6kXt1ixYtyyZQsTExP5/Plz9urVi8nJybLa6+bmxty5c1NPT4/Hjh2TlfEl/v7+0iRxXbt9+zaB7Dl3Tton+7p27arTnsm7d+9KQ+0NGzZkcHCw7KwzZ87w6tWrJD8dGHfq1El6fdWpU0dalx1yZJHStWtXDhkyhEOGDCEAUaQIgiBkgpubG6tUqcLhw4dz//79fP36tewd38uXLzlo0CAaGhoSAPPly8exY8cSAJs1ayZ7MvatW7doampKIyMjXrp0SVbGl1SuXJn6+vo6771NG4Lcs2ePTnP//PNPAmCJEiW07rV99OgRyU89HmvWrJHmQ86YMUOruUknTpygoaEhV69ezd69e0u9d1WrVuWZM2eyZcj3czmySEnz+vVrUaQIgiBkUnbMI3n79i3Hjh2b7nQK1atXlz3/4+zZszQwMKC5uTnv3r1LkrLm1f3T7NmzCYD79+/XOutz3bt3JwCdnLsoTUBAAK2trWloaKj1nLqQkBDmy5ePr169YpcuXQh8OueStkPKhw8fTneG7fLly9PV1TVbXmsZEUWKIAiC8E3Hjx9PN8/FwcFB9jleDh8+TIVCQWtra7q7u7Nv375aX6Dz0aNH0tCJLhUpUoSWlpZa75iTkpL4/PlzpqSksHbt2jqZQ6NWq9m6dWsCn04KmDb/SNtJ83v37k13mouJEyfK/rCDXKJIEQRBEL7q/fv37Ny5Mx0cHNLtuPLnz89nz57Jyt26das0lGRiYsL+/ftr1U61Ws1ChQoxV65c35x7k1lBQUEEwObNm2uddezYMXbq1ImTJ08mAHbq1Enr4ZK1a9dq/D/atGkje85Qmu3bt2c4KdvGxobXrl3TKjurRJEiCIIgZFpSUhK9vLx47NgxLlq0iP369WOzZs345MkTWVmdO3eWdoL6+vpandGaJEeMGEEAPHv2LJ8+fcrIyEhZOfHx8UxNTeWJEycIgLNnz9aqXSTZsWNHjVNKaDt3xs3NTePkgGmLNiexTLtkSf78+dmqVStOnz6dR44c4cuXL/+1IZ7P/ScvMJh2Ybw0MTEx37E1giAI/x3GxsYoX748ypcvr1VOamoqRo8ejePHj0u3qVQqLF68GLt3785yHkmkpKSgY8eO2Lx5M1asWIGnT5/C09MTVlZWWc4LCwvDwIEDUbx4cQBA7dq1ER8fDzMzM1kXuAwPD8eZM2c02jtt2jQsXbpU1oVa4+Li0LNnT6SkpAAA8ubNi759++Lnn39GlSpVspwHAFFRUShdujQ+fPgAe3t7WRnfzb9SMv2D3J6UuXPnZnieANGTIgiCkLPcvHmTjo6OGr0pr1+/lpU1dOhQFitWTGO7L/e6UvHx8Ro5lStXZq9evWRlkeSmTZs08ooWLcp79+7Jzhs4cCANDAzYoUMHnjhxQushnpwqsz0pev92UaSN6dOnIzo6WlrevXv3vZskCIIgZKBevXp4/PgxtmzZgjx58kClUmHJkiWyspYvXw6VSqVxm1qtlpVlZmYGU1NT6efnz59jwYIFsrIAYP/+/dL3nTt3xpMnT1CrVi1ZWe7u7qhYsSICAwNx8uRJdOzYEUZGRrLb9l/wQxUpxsbGyJ07t8YiCMKP7587IOG/QV9fH8OGDcPLly8xatQoHDhwAAEBAVnOyZ07d7qhIrlFCvBpCCXNiBEjUKpUKVk5L1++xL1792BkZISNGzfC1dVV1hBPmsqVK2P8+PGws7OTnfFf80MVKYIgfH8kdZ63ePFinWZ+iSiGvg8bGxts2LABDx48wL1792RlNG3aFEOHDpV+1kWRYmlpidmzZ8vOOXDgABwcHHDv3j2MHDlS1pwW4etEkSIIQqao1Wr89ttv0oQ+XVmwYAGuXbum08yMnD17FhcuXMj2xxG+rFKlSujZs6fs+69YsQJFixYFoF2RkidPHgDAjBkzNHpVskKtVoMkHj9+jKpVq8pui/B1okgRBOGb4uPj0bVrVzx69AjGxsY6y926dSvmzZuHsmXL6iwzI5s3b0anTp1Qu3btbH0cIXtZWFhIwz7a9qQUKVIEY8aMkZ2hUCiwYMECWFhYyM4Qvu27FClRUVEAgIiIiO/x8ILwn5eamor9+/cjISFB66ygoCA0aNAAJ06cQJs2bXTQuk+OHTuGESNGAADKlCmjs9zPqVQqTJw4ESNHjkT16tVhY2OTLY8j/HsaN26MkSNHal2kLF68GCYmJrIzFAqFGN75F/yr50mZOnUq/Pz84ObmJv186dIl2NjYYNu2bf9mUwThP0mlUuHw4cOYO3cuunfvDjMzM63ynjx5gnbt2iEwMBAA0Lp1a100E9evX0fv3r2l+S3Z0ZMSHx+PPn364M8//wQAtGrVSuePIXwfS5cuRWJiouz7t2zZUrwefhAK6noW3L8oJiYGlpaWiI6OFp/0EX5oycnJWg2jkMSpU6cwa9YseHp6wtbWFq9evdLqfXHq1Cn07t0b8fHxAABHR0c8ffpUdl6aZ8+eoX79+honYwwICJDmGuhCcHAw2rVrh8ePH0u3PXr0CE5OTjp7DEEQ5Mvs/lvMSRGE7yA5ORlXrlzBpEmT0KhRIwQFBcnOunLlCmrXro2OHTvC09MTADBv3jytCpTNmzejY8eOUoECQCdDPUlJSVi3bp3GRz5NTU1RuHBhrbPT+Pv746efftIoUOzs7MTkRkH4Af1Qp8UXhB9ZQEAAzp07h3PnzuHq1auIj4+HiYkJrl27Jp2iO6vWr1+PSZMmITU1VbqtTJkyGDx4sFZtHT58OEqUKKHRJa6LIsXExAS7d+9Gv3794ObmhkqVKkFPTw96ero7XipevDhevHiBGjVqSEVby5YtdfoYgiD8O0SRIgifUalUCAwMREBAQLqlZ8+eGDx4cJYny8XGxqJnz544e/ZsunX79u3T6hMnY8aMQWhoKBYuXCjdtnz5chgaGsrOBD5NvJ0yZQoAYObMmdi6davss2j+k7+/Pw4dOgQHBwfcvXsXGzdu1Enu57Zv3w5PT0906NABwcHBYv6BIPygRJEi/DDi4+Px7t07pKamIiUlBampqRpLSkoKbG1tZe30lUolhgwZgv3790OpVGqsMzAwwJYtW/Drr7/KareFhQU2bdqEmjVrIjQ0VLp92bJl6Natm6zMNIsWLcLChQthb28PAwMDlCxZEu3atdMqM61tHh4e6NevHxYuXIhatWpBX19f61zg07kuVCoVpk2bBnNzc6kY0pU3b95gxowZyJ07NzZv3oygoCCUKFFCp4/xuZiYGNy8eRMJCQkaS3x8vPR906ZN0aFDh2xrgyD8Z2X3RYSyU2YvUPSjSU1Nzbbs2NhY3rhxg76+voyPj9d5/unTpzl48GBOmDCB8+bN46pVq7h9+3YePnyYZ86c4a1btxgWFiYrOykpia1bt87wIpMA2L17d9nZJPn8+XPmzZtXI9PS0pKXLl2SnalWq7ljxw5aWVlp5A4ePFj2JdfTcufMmUMALFCgAL29vTl16lQ+ePBAdmYaLy8vGhoa0tbWVqvnMyNBQUE0NjZmoUKFsuXCaWq1WnqNbN26Vef5X3rMCRMmZPiaNDEx4ebNm7X6XwvCf1Fm99+iSJHBy8uLbdu25eTJk7lnzx4+ePCAcXFxOstfsWIFixQpwsaNG3PIkCFcvnw5jx8/Tnd3d60fR61Ws1evXtJG1MrKiuXLl2ezZs34888/c8aMGTx//rzs/OTkZDo5OWW4wba2tubGjRtlFWEqlYq3b9/myJEj0+VaWVnx0KFDstqrVqt57do1tm/fngqFQiO3WLFi9PLykpVLki9fvmTDhg0JgGZmZly5ciUHDBjA5s2bMyUlRXauWq3m9OnTCYCFCxemr68vSTImJkZ2ZhqlUsnatWsTAI8cOaJ13j9NnjyZALh27VqdZ5PkwYMHCYD16tWjSqXKlsf4XEJCAl1dXdm1a9d0r8tKlSrR09Mz29sgCD8iUaRkE7VazY8fP7JNmzbpNkrFihVjmzZtOHXqVL569SrL2YmJifTw8ODRo0dpaWmZ4Y7e0NCQM2fOZEJCQpayQ0JCeP78eS5ZsoRt27bNMLtQoULcvn17lnagarWanp6e3Lx5M3v06MH8+fOny1UoFBw2bBhDQ0Oz1ObU1FRevnyZI0aMyDAXAJs3b873799nKZf8VEzt27ePVatWlbIcHR35+++/08LCgrVr12ZISEiWc0kyJSWFixcvprGxsdRGPz8/kuTRo0cZFRUlK5fUPGovVqyYlKsra9asIQB26NBB50f/ERERzJUrF/PmzavToj5NaGgo8+bNSyMjI3p7e+s8P01ycjL/+usv9u3bl7ly5ZJeP+bm5tL3Y8aMYWJiYra1QRB+dKJI0ZKXlxddXV25cuVKjhw5km3atGGFChU0NkT/XIyMjDhgwAA+ffr0q9lKpZLXrl3j1q1bOX78eLZq1YolSpSgnp7eF7NNTU05evRovnnz5pttDw8Pp6urK2fOnMk2bdqwQIECX8wFQFtbW65ZsybTG9UXL15w7dq17NSpU7rhEWtrazZt2lT62dnZmW5ubpnKJT/thE+fPs1ffvmFNjY2Uk7u3LnZu3dvurq6cvLkyTQzM5PVjR4REcGFCxdqFD1t27bl1atXqVarqVar2bdv3ywXgWkePHjAypUrEwDz5MnD/fv362xnr1arOWrUKAJgyZIlM/VayIrXr1/TzMyMlpaWDAwM1Gk2SS5YsIAAuHDhQp1nk2T//v2zNf/q1ascNGgQra2tpddOgQIFOH78eN6/f5/r16+nra0tz5w5IytfDAl9H9n9vGfn8L1KpWJSUpLs+6empjI2NvaL62NjY6lUKmXnf40oUrSUUU+JiYkJy5Yty5YtW2qsz5s3L2fPns3g4OBMZSuVSuko+/O5DzVr1mS/fv24aNEitmjRQrp9xowZWTqqv3r1qkZ23rx52axZM06ZMoWHDh3iixcvWLhwYVpaWnLRokVffZFmZMqUKVK2nZ0du3Xrxg0bNtDd3Z0qlYpXr15lgQIF+Mcff8jaAFSqVEnayQ8aNIhnzpzReCOuXbuWL1++zHIuSfr5+VFPT49mZmYcMWIEfXx8NNar1WqthgnWrVtHAOzbty8/fvwoOycjSUlJbNy4MUuXLi2r9+hb7t69yyJFinDnzp06zybJpUuXslChQoyMjNR5tlKp5M8//8xKlSply1wXklIPZN68eTl8+HDeuHFD47Vy6tSpTG8D/kmlUrF169ZctWpVtuzUvL29uWvXLp3nkp8O6E6dOpUt22GlUskRI0bQw8ND59kqlYq7d+9mzZo1dT4/LyUlha6urmzatCm7dOkiO8fHx4e3bt3SuC0iIoKHDx9m//79aWdnxzVr1mQ5N+1gsHz58tK8M5VKxefPn3P37t0cMmQIK1euTD09PT558kR2+79GFClaOnToEJcsWcJDhw7x7t27/PDhg8YOd+7cuSxfvjx37Ngh66h76dKl3LZtG69fv87g4OB0O/MmTZpwyZIlsoYGIiMjuWDBAp46dYrv3r1Ll/327VvOmDGDERERWc4mSTc3N27bto3e3t4ZFiHe3t5ZLnw+d/bsWV69ejXbjkCOHTvG8PDwbMlWKpW8efNmtmSTZFxcHD98+JBt+bGxsdl6ZJmdR5UktXrdfcudO3d44cKFbPkbfHx8pMnV1atX/2ZvbFY5OjpST08vW4rbqVOnEgBPnz6t09zPew5btWql02wPDw86OztLB5/Xrl2TlRMeHq4xv8rf358zZsxgvnz5pAO5n376Kcuvmc+HjK9cucInT55w0aJFrFu3rkaPu42NDZcuXZql7EePHklz5WxtbTl79mw2a9Ys3RQDAwMD1qhRI12RpCuiSMlmnp6e2bYxV6vVsocbBEH4MQUHB7Nbt24EQH19fU6fPl3aDsTHx2u1nUvr4cuOobA6depQoVDIPuj5kmXLlhEAS5curdWnzCIjI6XiLC4ujlOmTKGBgYFU/Lx+/VpW7rNnz1iiRAn27t2bJ06cYMuWLaXJ97ly5eLQoUOzNNSd5uHDh3R0dNQYQv+8eHBycuLs2bN59+7dLA3FvHnzhn379v3isH+RIkXYvXt3rl69mrdv3872fZAoUgRBEH5AJ0+elOaROTg48Pr16/Tw8GCLFi1k9+KEhYXRyMiIJUqU0OmnnuLj42lgYEBHR0edZZLkH3/8QQC0t7fXanJ4YmIiGzRowHPnzvHPP/9kkSJFpLlErq6usg80jxw5QjMzs3Q7+mrVqnHbtm2yPmkXHx/PSZMmpZubaG5uzu7du3PPnj2yhhOjoqI4derUdFMM0pbx48czKCgoy7naEkWKIAjCDyoqKorDhw+XdiR169YlAA4dOlT2jrVHjx4EIHtoIyNXrlwhAI4ePVrrrLS5SleuXKGhoSHNzc356NEj2XkqlUrqmSpevDgBUE9Pj+PGjZP9cX2lUqkxJy9tadmyJR8+fCi7rVeuXGHJkiUzLCJy5cqlVba7uztdXFy4detWLly4kOPGjWPfvn3ZsmVLVq9endWrV8/RRYo446wgCEIOY2lpic2bN6NXr14YPHgwbt++DQDYtm0bHBwcMHHixCxnDhw4EEeOHMGuXbvQsGFDnbTz5s2bAID69etrlfP69Wv89ttvmDBhAjp16gS1Wg1XV1fZV60miQkTJsDFxQXAp0sxODk5YceOHbIvNBkREYFevXrh4sWL6dY9fPgQKSkpsnITExORkpKCtWvXQqVSZbh8+PBBVjYAVKpUCZUqVZJ9/+9NFCmCIAg5lIGBAczMzDRumzx5MooXL47OnTtnKatp06YoUqQIXF1dsXHjRlhYWICkVpc7uHHjBgCgXr16sjMAYNWqVTh8+DAuXbqEmJgY7N69Gy1btpSdt3r1aqxbt07jtsDAQPj6+soqUj58+ICJEyfC1NQUQ4cOhb29PfLly5fuqxympqZa/a3/dQqS/N6NkCsmJgaWlpaIjo7W6rL0giAIOZG7uzvOnj2Lc+fO4fbt21CpVAA+7diuX7+OmjVrZilv3rx5mD9/PrZs2QIfHx9MmjQJBQsWzHK7PD094eDgACsrKxQtWhTe3t5Zzkjz8eNHFC1aFElJSQCAFi1a4PDhw7CyspKVd+jQIfTu3Vv6uWDBgmjatCmaNm2KJk2aIH/+/LLbKuhOZvffokgRBEH4AURFReHy5cs4d+4czp07B7Vajfv376No0aKZur+XlxciIiJQv3595M6dGzExMXj27BkqV66c5bY0btwYRYoUwd69ezF48GD89ttvMDQ0hI2NTZazZs+erXEVbwDo378/tm7dClNT0yxlXb16FT169EDdunWlwqRMmTJZvnK5kP0yu/8Wwz2CIAg/ACsrK3Tt2hVdu3YFSbi7u8PDwyPTRYqHhwd69eoF4NMOAgDCwsJktSVXrlzYu3cvAODgwYM4f/68rN6UuLg4bNq0SfrZwcEBmzdvRtOmTWW1K1++fAgODoaBgdi1/Vfofe8GCIIgZIe0HfF/kUKhgKOjI9q2bZvp+/Ts2RNjxozRuE1ukWJhYSF9Hx8fj5UrV6abO5MZO3fuRGRkJIyMjDB37ly4u7vLLlAAoHz58qJA+Y8RRYogCN/V9evXdZ6ZmJiI+fPn6zz3R7dixQrUqVNH+jk8PFxWzufd8w0aNEC3bt2ynJGamorVq1ejSZMm8PDwwLx582BiYiKrPcJ/lyhSBEH4blxcXHDgwAGd5y5fvhweHh46z/3RGRkZwcXFBba2tgDk96SkFSl6enpYv369rDkf165dw5IlS3Dp0iWULl1aVjuE/z5RpAiC8F28fPkSgwYNgrW1tU5z/f39sXTpUsTFxek097+iYMGCOHz4MPT09LQuUoYNGyZr4i0ANGvWDH369BGTWoWvEkWKIAiyaPPBwMTERHTr1g2xsbE6L1LGjx+PpKQkUaR8RePGjbFo0SKthntsbGywYMEC2W0QxYmQGaJIEQQhS0ji2LFj2LZtm+yMUaNGwd3dHQBkfWz1S86dO4c///wTAESR8g1Tp06Fs7OzrPtaWFhg4cKFyJMnj45bJQiaxDRoQRAy7dq1a5g2bRq8vb3x+vVrWRm///47du/eLf2sq56U5ORkjB07VvpZFClfp1AoMHToUFn3rVWrlphHIvwrRE+KIAjf9OTJE7Rs2RKNGzfGgwcPMHXqVOTNmzfLOR4eHhgxYoTGbbrqSVm9ejV8fX2ln+Pj43WS+18md8ilXLlyWp1OXxAySxQpgiB80evXr9G7d29Uq1YNFy5cAADkz59fo8ciK7y8vLBo0SKN23TRk6JSqWBra4sVK1YAAIoWLYqEhATpNPKCIPyYRJEiCP9BJBEcHIzLly9j3bp1WLFiBVJTU7OUERsbixUrVuDcuXMat8+fPx/m5uay2tWzZ09YWloCACZOnIiGDRvqpEjR19fHr7/+itjYWADAypUrsXv3bul6MIIg/JjEtXsE4T/g7t27ePz4Mby8vKQlIiICAFC5cmVcuHBB1lVa37x5g0aNGsHf3x8AULZsWXh4eGh1Vs/69evj1q1bePnyJezt7WFoaJjla7R8SYMGDXDz5k2EhITAzs5OJ5mCIOieuHaPIOQwoaGhSE5OhkKhgJ6eHvT09DS+19PTg6mpKYyNjbOcbWJignXr1uHVq1cat//000/466+/ZPVWvHnzBg0bNkRAQAAGDhyI3bt3Y+nSpVoVKK9evcKtW7dQt25dODg4yM7JSGJiIu7du4cKFSqIAkUQ/iNEkSL8UJKSkmBsbJwt51hQq9XYt28fzM3NUaBAARQoUAD58+fX2am6X758iWbNmiExMTHD9YMGDcLKlSuzXKQkJyfj7t27SE5O1ri9efPmOH78uKyhmYCAADRq1AgBAQGYOnUqlixZgjx58qB9+/ZZzvpc2kXpBgwYoFVORu7du4eUlBQ0bNhQ59mCIHwfokiRIS4uDleuXEG9evV0eo6HNE+fPsWrV69Qt25d5M+fX+f5e/bsQWpqKmrVqoUKFSro9IJciYmJGDJkCAoWLIiqVauiWrVqKFmyJPT0dDP9yd3dHW3btkWpUqVQtmxZjaV48eIwNDSUna2np4dcuXKluw6JjY2NVLR07NgRQ4cOzfLfExkZiXfv3qFs2bJ48uSJxrrixYtjx44daNKkSZYyExMTsXPnTixbtgyBgYEwMjJC4cKF8e7dO3Tr1g379++X1SsTEBCAhg0b4s2bN5g2bRoWL14MhUKBpUuXalUcqtVq7N27F6ampujevbvsnC9JuwaQKFIE4T+EP7Do6GgCYHR09L/+2O3btycAVqpUiaNGjaKLiws/fPigk+y4uDgWLFiQAFiiRAn269eP27Zto6enJ1Uqldb5Hh4e1NfXJwCam5uzQYMGnDJlCo8fP87AwECt275w4UICkBYLCws6Oztz9OjR3L17N728vLKcGxMTwydPntDV1ZVVq1bVyE9bDA0N2bNnzyz9DQkJCbx//z63bNnCIUOGsHr16lQoFOmyK1SowJMnT1KtVmcqV61W093dnUuWLKGzszP19PTSZSoUCo4bN45xcXFZei7i4+O5Zs0a5suXjwBobGzMUaNG8d27dxw1ahR//fVXKpXKLGWm8fPzY5EiRQiAM2bMyPTfmxmXL18mAPbt21dnmZ+rX78+ATAkJCRb8gUhI7rYJn8tOyAgINvyfXx86O3tnW35X5PZ/beYOPsFN2/ehK+vL2JjYxETE4PY2FhpiYmJgb+/P7y8vNLdr2zZsqhfvz5GjBgBR0fHL+YfPHgQkZGRiIqKynDx9fVFdHR0uvtZW1ujR48eXz3bY0hICM6cOYPQ0FCEhYUhLCxM4/uwsLAMswHAzs4Os2bNwvDhw7/Yw/LkyRP8/fffCAwMRFBQkMbypVwAKFy4MIYNG4ZBgwbB3t7+i793/PhxPHv2DK9fv5aW0NDQL/4+ADRt2hSTJ09Gs2bNvnq0Hxsbi507d+LJkydwc3ODt7e3xsdU9fT0YGZmJp0IrESJEliwYAF69uyZqfNCPHv2DFu3bsXZs2fx9u1b6faqVauiTZs2aN68ORo3bozSpUtj165d/6+9+w6L4mrbAH7TuyAoKIIK2LCggiaKGlBAECsIYjcWrBhNVJDYYwsYK/YaexcxFlREEQsqoKgoqEAsSEB6hy3P94cv+7mh7S67CPH8rmuuXbbcexiWmWfOnJlBjx49qs38UkBAAFavXo3U1FSoqqpi+vTpWLBgAQwNDQEA0dHR6Nq1q0Q9HklJSbC1tcW7d++waNEirFy5Uqq71caNG4cjR44gJCRE7F6j6hQVFUFHRwetW7fG8+fPpZpdJjc3F+rq6lLteawtRCSz09CXlpaipKQEWlpaMslPTEyEoaGhRLtdeTweTpw4gREjRlTYy5qTk4NXr16he/fuYmdnZ2djz549ePPmTYVnXy4qKkJSUhI4HE6V64KKZGZm4uDBg9ixYwd8fX0xceLEctkpKSlISUmBoaEhTExMRM4uKCjAmTNnsG/fPjx48ADv3r0TLI+JCIWFhcjIyBCsK77//nvBEXnSJPL6uxYKJpmRZU+Ki4tLhVvrVU3Gxsbk4+NDT58+rTZfU1Oz0hx5eXlSUVERekxNTY3Gjh1L169fr3Yr+f79+5Vm6+rqUps2bUhDQ0Po85ydnens2bNUUlJSbdtXrlxZLlddXZ1at25NNjY25ObmJvSco6MjBQUFibx136dPH6HeBmNjY7K1taXJkyfTmjVraPr06QSAFBQUaMyYMRQdHS1SLtHnnp6yXg1lZWXq1q0beXp60o4dOygiIoIKCgqof//+ZGhoSDt37qTS0lKRs4mIgoKCCABpamqSi4sL7dmzR6hnJy4ujpYsWULFxcVi5ZaZOXMmqaur0/z58yklJUWijMp8+vSJLCwsaMmSJVLtQSmzb98+Gjp0qEy2PDMzM8nHx4fWr18v9ewy06dPp9atW9ORI0ck7qmqzNGjRykgIECqmWUCAwPJ2dmZ8vLypJpbVFRE27Zto+bNm9P8+fMlyuBwOLR+/Xqh3tWCggK6fPkyzZ49m1q3bk0A6PLly2Ll8ng8OnHiBLVt25Z69epFfD6fEhMTKTAwkJYtW0bDhg0jExMTwfKvoKBA5OykpCSaO3euYBk+Z84c+vPPP2np0qU0duxYsra2pqZNmwqWYb179xYpl8/n04MHD+jHH38kVVVVwfunT59OY8aMoX79+pG5uTnp6OgILV+XL18uUnZERAR5enqSlpaW4L3a2tpkZ2dHnTt3JiMjI6HPLZvu3Lkj8rwRh6jrb1akVOLy5cu0a9cuOnbsGF28eJHCwsIoOjqaXr9+TampqRQQEEAASEdHhzw9PenWrVtiLXz37t1LBw8epKCgIAoLC6OnT5/Su3fvKDc3l/h8Pg0dOpQAkK2tLe3fv59yc3NFzk5PT6edO3fS2bNnKSwsjGJjYyk1NZU4HA4Rfd51oqmpSSYmJrRy5Up6//69WPMmJiaGDh8+TDdu3KCXL19STk6O0Ert3Llz1LBhQ/rll1/o1atXYmUTEV27do0uXrxIL1++pKKionLPT506lX7++Wd6+/at2NlERGfOnKGYmJgKCxAej0dbt26lwsJCibLz8/Pp+vXrlRYhNV35p6amynR3Rn5+vkwKlPqOz+eTp6enoMBt164dnThxQuh//tOnTxLnd+nShZSUlKTRVCHh4eGkqqpKKioq9ODBA4lz4uPjBffz8/Npw4YNghWxsrIyzZs3T+zM6OhosrKyIgUFBYqOjqYNGzZQ//79hTbQVFVVycnJiW7evClSJp/Pp8DAQOrUqZPQhlmDBg3KrXwbNGhAP/zwA82ePZvS09OrzX7w4AGNGDGiwl23/54MDQ2pd+/eNH78eNq4cWOVufn5+bRnzx6ytLSsNldDQ4NatWpFffr0oREjRtDcuXPp6tWrlWZzuVzauXMndejQocpcJSUlatq0KXXq1In69u1Lbm5uNH36dFq8eDG9efNGpHkvLlakyNjy5cvp3LlzEm8RVyUvL49Wr15NSUlJUs8mIoqNjaUbN27IbF/q06dPxdoyEZekBQTD1FR8fDyNGTNGMG6pY8eOdObMGeLxeDR27Fi6cOGCRLnm5uakqakp1bY+f/6cdHR0SF5engIDAyXK4PP5tHjxYpoxYwbl5OTQmjVrqFGjRoICYs6cOWJv5BQUFND8+fMF4+L+PbVt25bmzJlDwcHBIv+v8/l8unz5MnXr1q3CTBMTExo2bBgtX76cAgMDKSkpSeRi/OPHjzRq1KhKV/AdO3akgIAAunTpEr18+VLs5VNkZCStW7eORo0aRW3bti03Js7Hx4fi4+PF2lD9EofDoejoaNq+fTuNHz+e2rZtK8hWUFCgx48ff5UNE1akMAzDyMiLFy/Iw8NDsELp3LkztW/fnhQVFenEiRNi55mampKenp7U2vfu3TsyMjIiALRz506JMrhcLk2bNo0AUJs2bQS7GTQ0NGjBggUSHShw9epVwW6WLycLCwvasWMHJSYmip3J4/Fox44dZGtrS61atSq3y0JOTo6Cg4PFzv23nJwcioiIoAMHDpC3tzcNGjSIzMzMSE1NTaKDASqTm5tL4eHhtHnzZpowYQI5OztLfaMvIyODrly5QsuWLaNNmzZJNVtUrEhhGIaRsadPn9Lw4cPLjSnbv3+/WDnNmjUjQ0PDGrUlLi6O+Hw+ZWRkkLm5OQGgZcuWSZRVXFxM7u7u5XaPLF68WKRdI/+WlpZGY8eOrbQ3QltbW6SxfKLg8/mUnp5OMTExdOnSJdq1axdt2bJFZr0FhYWFlJaWJpPs/zJ2dA/DMEwtePv2LQYMGICXL18KPR4QEAAvLy+RMho3bgwtLS0kJiZK3A4HBwcsWrQIixcvxt27dzF16lTs3LlT7KN68vPz4erqiuvXrws9bmlpibNnz6Jly5Zit43D4aCkpAQcDgdcLldw++V9TU1NtGjRQuxspn5ip8VnGIaRMSLC5cuXYWFhASLCq1evwOfzAQCzZ89Gfn4+Fi5cWG1OSUkJGjVqJHE7IiMjERISgnv37qGwsBBDhw7Ftm3bxC5QMjIy4OzsjIcPHwIAFBUV0bp1a5ibm6N9+/aIi4uTqEhRUlKq0YkWmW8XK1IYhmEkJCcnhxkzZmDGjBkAPp+/4sWLF3j69CmePn2Ka9euQVVVFXPmzKmyYCgtLZXo7MBl1q5dCwAoLCyEgoICBgwYgE+fPol1xurS0lLs2LEDgwYNgre3N9q3bw8zMzMoKytL3C6GqSlWpDAMw0iJmpoarKysYGVlJXisqj3qGzduhIWFBUpKSqCsrIxLly5BSUkJ/fv3F/kz4+LiEBgYKPiZx+Ph1KlTsLGxEatIUVZWxuLFi0V+PcPUBulcUIVhGKYOqItD7OTk5CrtRdHR0YG9vT0A4NGjRxg0aJDYu1P8/PwEv3eTJk1w7NgxhISEoF27djVqN8PUBaxIYRjmP4HP5wv1KNQHDg4OQj9bWFigTZs2Ir//3bt3OHLkCOTl5TFnzhzExcVh1KhRMjsFPsPUNlakMAzznxAREYEDBw587WaIxcjICObm5oKf/30F7uqsX78e3bp1Q1RUFDZt2iSTa6wwzNfEihSGYf4TTpw4gbCwMHC53K/dFLF82Zvi5uYm8vtKSkrQo0cP3L17F126dJFByxjm62NFCsMw9V7ZYNG8vDxER0d/7eaIpWyQbMeOHcUaR6KiooJRo0ZBXp4txpn/LvbtZhim3gsLC0NqaioAIDQ09Cu3Rjw2NjZQUlISqxeFYb4VrEhhGKbeO3HihOB+fStSNDU10bNnT1akMEwFWJHCMEydxuPxqny+tLQUZ8+eFfx8584dlJaWyrpZUjV37lx06NDhazeDYeocVqQwDFPnJCUlwd/fH6NHj0ZBQUGVrw0JCUFmZqbg56KiIjx48EDWTZSqYcOGfe0mMEydxM44yzBMnfD333/j9OnTOHXqFCIjI6Guro4HDx5Ue/HQ4uJiREdHw87ODnp6eli1ahX+/vtv9OnTp5ZaXnPsvCYMUzFWpDAM89Wkp6fj4MGDOHXqlOCidmX27duHjh07Vpvh6uoK4PN1a5o3bw4PDw+ZtJVhmNrHdvcwDPPVNGzYEI0bN0ZcXJzQ43PnzsXIkSNFzuHxeCgpKYG6urq0m8gwzFfEihSGYb6agoIC3Lx5E7m5uYLHfvjhB/j7+4uVU1RUBACsSGGY/xi2u4dhGJEcOHAAiYmJaNq0KQwNDQW3TZo0gZKSkth59+7dw9ixY5GUlISOHTuiUaNGiI+Px8mTJ8XOKxtcq6GhIXY7GIapu1hPigS4XC7evHkjs/xPnz4hLS1NZvmvX79Gfn6+zPIjIyNRUlIik+z8/HzcvXtXZqc+f/HiBe7cuQMOhyOT/OPHj+P8+fPIyMiQenZBQQGGDRuGOXPm4PDhw4iLiwOfz5davqOjI7Zv345Zs2bBxcUFPXr0QPPmzaGsrAx9fX34+vqisLCw2hwOh4Nly5ahT58+SEpKwty5cwVXAD5z5gyaNGkidtvKPpf1pDAVkeXVsfl8frWHyddEcXGxzLIBiPQ/+1VRPZaTk0MAKCcnp9Y/29nZmVq3bk1z586la9euUXFxsdSyc3NzSV9fn7p3707Lli2jBw8eEI/Hk1p+eHg4KSkpUb9+/WjdunX0/Plz4vP5UstfsWIFqaur06BBg2jr1q305s0bqWXz+XyytbWlBg0akIuLC+3YsYMSEhKklp+VlUW6urqkoaFBzs7OtGHDBoqJiZHa/L9//z4BIADUsWNHmjVrFp06dYr++eefGuUWFxfTu3fvaMGCBYJ8AKSlpUW2trY0f/58OnHiBP39998i5fF4PHr9+jWdPHmSfHx8qH///tSoUSOh7LLJ2tqawsLCRMp9/fo1ff/99wSAmjZtSteuXRM8V1JSItHvTkT0/PlzAkCTJk2SOKM+i4+Pl+r/cBkOh0OXLl2iHTt2SD2bx+NReHg4eXl50cmTJ6We/+7dO9q0aRP98MMPUl0GERGVlpbS9evXacaMGWRra0tcLleq+f/88w/t3r2bBgwYQL/88otUs/l8PkVHR9PSpUvJwsKCgoKCpJovKlHX33JEMiwxZSw3Nxfa2trIycmp9jBFcZ05cwYvX74En88XTDweT3D/5cuXuHjxouD1GhoasLe3x8CBAzFgwAAYGRlVme/v74+ioiJBJo/HE7p//fp1xMbGCl7fuHFjODo6wtnZGf3794eenl6l2R8+fMCBAwfA5XLB4/EEt1/eP3z4MPLy8gTvad68OQYMGIABAwbAzs4OmpqaleaHh4cjNDQUXC4XHA5H6JbL5SIrKwunT58Wek+rVq3g5OQEJycn2NraVtktf/DgQSQkJKC0tLTcxOFwEB8fj6ioKKH3mJmZwdHREf3790ffvn0r/T5wOBysWbMGRUVFKC4urvA2JiYGnz59Enqfvr4++vXrBzs7O7i5uUFHR6fC/Li4OMG8zcvLQ25uruB+2c8fPnyocMuubdu2+OWXXzB58mQoKChUmB8UFITr168jNTVVMKWlpSE7O7vS+QkALVq0gKenJyZOnAhDQ8NKX+fj44OIiAg8efJEaJwIABgaGkJLSwvx8fEAgM6dO2P16tVwdnYW6RDa4OBguLm5oaCgAK6urti9e3eV32NxPHz4EN9//z1mz56NLVu2SCXzS0RUo8OEiQhEVOF1djIyMnDnzh0MHTpUrEwej4cLFy4gICAADRo0wPnz54We++eff/D+/Xu8f/8egOhXWCYixMTE4NChQzh69CjS0tIQFBSEfv36ITs7Gzk5OcjOzha636FDB9jY2IiUHRkZiRMnTuDUqVP48OEDVFVVcePGDcjLy6OwsFAwFRUVCe4PGzYMZmZm1ea/ffsWZ8+exenTpxEREQEAsLS0xOrVq1FSUoKSkhKUlpYK7pf9PH/+/Er/58oUFxfj+vXrOHfuHC5cuCA4N8+4ceMwcOBAcDicCqemTZti7Nix1bY9KSkJgYGBCAwMxN27dwXLiFWrVqFZs2aC5euXy3Uul4tevXqhd+/eVWZzuVyEh4fj/PnzOH/+PN69ewcA0NLSwvr164XWQf+exo0bV+36TBIir79lWyvJlix7UlxdXSvcaqxu0tDQIDc3N3r8+HGV+VpaWhLlm5iY0Pz58yktLa3S7IiICImy5eXlydbWlnbs2FHlVu3q1aslym/cuDF5enpSaGholfPG1tZWorbb2NhQQEAAJScnV5rN4XAkanurVq1o0aJFFBMTU+UW65UrVyrNUFdXpyZNmpCSkpLQ4y1btqRFixbRixcvqpwvRETz588v11PSqlUr6tWrF7m6utLo0aMFzykoKNCwYcPoypUrIm/pde3aVfA9Gz58OK1evZouX75MKSkpRETk5eVFrVq1ouPHj4vdu5ScnEwtWrSgffv2SX2rPyUlhXbs2EG3b9+Wam6Z0aNHk6+vr0Q9pnFxcTRgwADicDhE9Pk7ePfuXVqyZAl99913JCcnRwBE7hHMyMggPz8/atGiheBvbWNjQx4eHmRtbU3GxsakoKAg9D1p3bp1tbnJycm0bt066tSpU4X/X1X9f8yaNavSXD6fT0+ePCFfX18yNTWV6P/v/Pnzlebn5OSQv78/de/eXaJsAFRQUFBpfnx8PI0cOZI0NTUlyu7Zs2eV8z04OJgsLS0lbvuyZcsqzS4tLaUNGzaQrq6uxPmy+p9iPSk1FBkZidTUVMjLy0NeXh4KCgqC+/Ly8rh06ZLgCAQDAwMMGTIEw4YNQ79+/aCqqlptfnBwMPh8viBXQUFBMMnLy2PJkiWCa5BYWlpi2LBhGDp0KDp16lTtFl12djbu3r0ryFNUVBS6JSI4OzsjKysLqqqq6N+/P1xcXDBo0CA0atSo2ra/efMGr1+/hqKiIpSUlMrdxsXFCc5V0aJFC7i4uMDV1RXW1tbVbq0AQEREBHJzc6GsrFzhtHPnTqxbtw4KCgro168f3NzcMGzYMOjr61ebDXye96qqqlBVVYWamlq5W2dnZ9y5cwempqYYMWIERowYgS5duoi0JZ2RkYEnT55AS0tLaNLU1ISCggJSU1PRvHlzaGpqwsPDA2PGjIG1tbXIW+kJCQlIT0+HgYEBDAwMoKamJvT8tm3b4O/vD09PT0yaNKnKXpOKxMfHQ19fHw0bNqzw+evXr8PW1laigbLA51PYKysrS/Ter+Xu3bvo3bs3rKys8PDhQ5GvOlxaWgo/Pz+sWrUKLVu2xPz583H16lWEhIQgJycHwOeTuHXv3h1OTk6YNm1alX+vp0+fIiAgAEePHhUczVQRfX19GBsbCyYjIyOYmZlh+PDhlb7n3r17WL58Oe7evVvhGIV27dqhWbNm0NHRgba2ttCtjo4OOnToACsrqwqz+Xw+IiMjERoaitDQUNy5c0eo/fLy8pg4cSI0NTWhrq4uNKmpqUFdXR3W1tZo1qxZpe3/+PEjrl+/Lpi+HNPXsmVLTJgwASoqKlBWVoaKiorQfWVlZQwePLjK73RGRgZCQkJw9epVBAcHIyUlRfDcgAED4ODgILQM/HJq3Lhxtb1M6enpuHbtGq5cuYKrV68K9eR6e3vD1NRUsAz/cnmuqKiIdu3awdzcvMr85ORkBAcH4/Lly7h+/bqgF11DQwMbNmyAkpKS0Prny/VR7969RVoviIv1pMgQj8ejESNG0MKFC+n+/ftSHS9C9HmLxtHRkbZs2UJv376VajYR0YULF2jcuHF09uxZys/Pl3r+ypUradGiRRQVFSX1LWYul0tTp06l/fv3U3p6ulSziYjevn1LCxYsoEePHslkH394eDhduHChRuMvqvLy5Uup7x//lvH5fLK2tiYAdOPGDZHfFx4eTubm5hVumRoaGtLEiRPpxIkTIn+HU1NTaf369TRhwgTq0qULKSsrC2V26tSJ3rx5Q0VFRZL+qkT0ecv74cOHtGHDBnJ1dSV9fX0CQF5eXjXK/VJxcTHdunWLli5dSr169SJFRUU6fPiw1PJ5PB49efKE/P39ycHBgTQ1Nen169dSy+fz+RQTE0P+/v7Ur18/6tixI5WWlkotn8fj0cOHD+m3336jnj170tSpU6WWTfR57NfNmzfJ29ubOnbsSMeOHZNqvqhYT4oMUQ33TzMMUz8EBQVh2LBhcHJywpUrV6p9fXZ2NhYuXIhdu3aVe27s2LHw9vZGx44da7z84HA4ePXqFWJiYvD06VM8ffoU8+fPR79+/WqU+29EhDdv3iAiIgIeHh4y6QXLz89HQkICOnfuLPVs4PM5dHJzc2FgYCCT/Pz8fCgoKJTr1ZSWnJwcaGtryyQb+HxU4Nc4dF/U9TcrUhiGYSrA5XLRqVMnxMfH4/Hjx9WuRJ88eYI5c+bg7du34HA4goHeZZOOjg7u3LmDNm3a1NJvwDB1l6jrb3YyN4ZhmC9wOBwoKSnhwIEDiIuLw7hx40Tayu/SpQvCwsIqfZ7+d4QPwzCiYydzYxiG+cKcOXOQmpqKZcuWQVlZGStXrpRKrpycnMiDbhmG+Yz9xzAMw/wPEeH48ePo1q0bUlJSMHv2bLRo0eJrN4thvlmsSGEYhvmfN2/eIDs7Gx8+fAAA3L9/H76+vlK9vADDMKJjRQrDMMz/PHr0SOjn9PR0zJ49m+2mYZiv5KsNnPX390dGRgb09PSQkJAABwcHuLm5fa3mMAzD4OHDh4L7bdu2RWhoqNgnxGMYRnq+SpEybdo0mJmZwc/PT/CYg4MDMjMzMXXq1K/RJIZhGEFPSrt27RAaGoqmTZt+5RYxzLet1s+TEh0dDSsrq3KH4lX2eFXYeVIYhpEWDocDbW1ttGjRAjdv3kSTJk2+dpMY5j9L1PV3re9o3bVrFywtLcs9XvbYmTNnartJDMPUdzwecOsWcPz451seT+yI2NhYtGzZErdu3WIFCsPUEbVepISEhMDU1LTC53R0dHD9+vVabhHDMPXauXNAy5ZA377A6NGfb1u2/Py4GAoKCnDz5k2ZnT6dYRjx1XqRkpiYCF1d3Qqf09XVRWRkZC23iGGYeuvcOcDNDfjfIcMCycmfHxejUOnVqxcrUBimjqnVIiU7O7vK53V0dKp9DcMwDIDPu3TmzAEqGsdW9tjcuRLt+mEYpm6oVwf/l5SUIDc3V2hiGOYbFR5evgflS0TA+/efX8cwTL1Uq0WKjo5Olc9X14uydu1aaGtrCyZjY2PpNY5hmPolJUW6r2MYps6pUz0pmZmZVRYyvr6+yMnJEUzv37+vvcYxDFO3iHoOE3auE4apt2r9ZG46OjrIzMys8Lns7Gx069at0veqqKhARUVFVk1jGKY+6dMHMDL6PEi2onEpcnKfn+/Tp/bbxjCMVNR6kTJixIgqj+BxcHCoxdYwDFMXvHv3Do8ePYKysjKUlJSgpKQkdF9JSQm6urowMjL6/zcpKACbN38+ikdOTrhQkZP7fLtp0+fXMQxTL9V6keLu7o7du3cjOztbaNdOSEgIAMDe3r62m8QwzFfWpEkT7N69G9euXavweQ8PD2zatKn8E66uwJkzn4/y+XIQrZHR5wLF1VUm7WUYpnbU+pgUe3t7uLm5Ye3atUKP+/n54fTp09UOrq0LeDwewsPDweFwZJKfkpKC58+fi3WJAHE8e/YMHz9+lEk2ANy5cwd5eXkyyS4uLkZoaChKS0tlkp+QkICoqCjw+XyZ5IeHh+PFixcy+dsSEfbu3YsnT57IpP2JiYkYM2YMtm/fjqdPn4InhUN7eTweIiIisHbtWqSnp5d7vkWLFrh06RJOnDhR+VlgXV2Bv/8Gbt4Ejh37fJuUVOcKFFlegaSgoADFxcUyySYiJCUlySQb+HzU5ps3b2SWn5aWJrPlHREhNjZWZvOew+HgyZMnMskGPg+xiI+Pl1m+VNBX4ufnR97e3uTn50dTp06l06dPi52Rk5NDACgnJ0cGLaza6NGjSUdHh0aOHElHjhyh9PR0qWUXFxeTsbExtWjRgmbNmkVXrlyhoqIiqeU/efKE5OTkyNLSkpYuXUoPHz4kHo8ntfwNGzaQkpIS2dvb08aNG+n169dSyyYicnZ2Ji0tLRo+fDjt37+f/vnnH6ll5+bmkp6eHjVp0oQmTpxIp0+fpuzsbKnl37t3jwBQ8+bNaerUqRQYGEi5ublSy/fz8yMApK+vT6NHj6Y///yTkpOTa5xbUlJCaWlpNGDAAAJAAEhbW5ucnJxo1apVdOvWLSosLBQp6/3797R3715yd3enhg0bCvIAkLKyMgEgeXl5mjdvHuXn59e47V9TYWEhnTx5kgYPHkyxsbFSzc7JyaGjR4+Si4sLde7cmbhcrtSyeTwe3b9/n7y9valNmzbk5eUltWwioszMTDpy5Ai5u7uTlpYW/fXXX1LNf/nyJfn5+ZG1tTU1aNBAqsvn0tJSCg0Npblz55KpqSnZ2NhILZuIKCsri44dO0YjR44kbW1tWrVqlVTzExISaOPGjdSvXz9SVFSkiIgIqeaLStT1d61fYFCaZHmBwS1btiAyMhJEJNgC+vL2w4cPCP/i/Avy8vLo1asXBg0ahEGDBsHc3BxyZfvFKzBt2jQUFhYKZX55PyoqCq9fvxa8Xl1dHQ4ODhg0aBAGDhxY5dVZExISsHz58nKZX05XrlwR6u0wMDCAs7MzBg0aBAcHB2hpaVWaf+HCBZw+fVqQxefzhbILCwtx6dIlofe0adNG0PbevXtDWVm50vw1a9YIehv4fL4gv+z+27dvER0dLfSebt26YeDAgRg4cCCsrKwgL19xJyGXy8XEiRPB5/PB4/EEmV/ej46OFtryUlRURK9evTBw4EA4Ozujffv2lf5tY2Ji4O/vDx6PBy6XKzSVPXb37l2hXjhFRUX07t0bAwYMwIABA9CxY8dK8w8fPoyLFy+ipKQEJSUlKC0tFdwvKSlBfn5+hVu97du3R//+/eHu7g5ra+tK5/3cuXMRHx+P7Oxs5OTkIDs7G9nZ2SgqKqr0PQCgrKwMd3d3rFmzBs2bN6/wNS9fvoSbmxtevHgheMzAwAD9+/eHk5MTHBwcYGdnB2VlZezevbvCa3zJQklJieDzevXqJfRcamoqoqOj8fjxY7i4uMDc3LzaPB6Ph5s3b+Lo0aM4e/Ys8vLyYG5ujp07dyIvL08w5ebmCv38xx9/VLscy8zMxIULF3DmzBlcv35d0KPo6OgIOzs7lJaWCk1l3xF9fX2sWrWqyuzS0lLcunULgYGBCAoKQsoXh26PHz8eBgYG4PF4gu/xl7d2dnYYM2ZMlfnv3r1DUFAQgoKCEBYWBi6XC+Dzd2f69OkgIqH/wy//L+fMmYOuXbtWOc/v37+PoKAgXLhwAa9evRI8Z2pqCkdHR6HlyL9v9+zZU+UyKScnB8HBwbhw4QIuX74sdLqMPn36wNzcvNxysGxq1aoVFi9eXOW8SUxMxF9//YULFy7g9u3bgnkDfB7HqaWlJZQJ/P8yfdiwYXBxcaly3jx8+BAXLlzAX3/9hdjYWMFzmpqa8PDwqHRdAQCLFi1CmzZtqmy/JERef9eoFPrKZNmT4urqKrSFJ+qkr69PkyZNoujo6CrztbS0JMrv0KED/frrr5SamlppdkREhETZioqKZGdnRzt27KCSkpJK81etWiVRfsOGDWns2LF09erVKueNra2tRPnm5ubk4+NDcXFxlWZzOByJspWVlcnJyYl27txJWVlZleZfuXJFonwTExP65ZdfKDw8vMot4nnz5lX4fjk5OVJVVa3we6Wjo0M//vgjXbp0iYqLi6uc9127dhW8T1NTk4yMjKhjx47Uq1cvGjhwIHXr1k0o29ramnbt2kWZmZlV5hIR5eXlkYaGBvXt25d+//13evz4sVAPHofDoYCAAOJwONVm/dvjx4/J1taW9uzZI/J7OBwOHThwgFq0aEEKCgr07NkzOn/+PC1dupQGDRpEhoaGQr9rQEBApVl8Pp+io6Ppl19+oaZNm0r0HUhKSqo0/+3btzRixAhSVFSUKLtNmzZVzouwsDCysLCQKBsAzZo1q9JsHo9Hu3btImNjY4nzz58/X2l+dnY2zZs3jxo1aiRxfkFBQaX58fHx5O7uThoaGhJlW1tbVznvr1y5QjY2NqSgoCBR/tKlSyvNLi0tpU2bNtXobxseHl5l+yXFelJq6OPHjygoKAAAyMnJCbZsy24PHTqEFStWAAA6deqEwYMHY8iQIejevXulW/FfevPmDYioXHbZfU9PT9y4cQOKioqwsbHB4MGDMXjw4Eovzvil4uJiwTlkyjK/nIqLi9GzZ0/B4OUBAwZgyJAhcHJyEmlMUGZmJjIyMiAnJwd5efly+VFRUXD933gAMzMzDB06FEOGDEGvXr2gqFj9WO0PHz6guLgY8vLygvwv769fvx4bNmwQ9F6V5bdu3brabCJCQkKCIE9BQaHcfWdnZzx69Aja2toYOHAghg0bBkdHR5G+YwUFBfjnn3+gqKgIBQUFKCoqCt3PyspC27ZtUVxcDAsLC7i4uMDFxQUWFhZV9ryVSU9PR0FBgeBwfGVlZaioqAjm66lTp+Dh4QE9PT24uLjAzc0Nffv2rXIr8UspKSlQUVFBgwYNKvxbDRs2DDExMRg/fjzGjRuHVq1aiZRbpqSkRCanEQgNDYWdnR18fX2xZs2aKl9LRDh79iyWLFmCuLi4Sl+np6cHKysrdO3aFZaWlujduzcMDQ0rfG1RURGuXr2KsLAwhIWF4cmTJ0JjUHR1dTFp0iRoaWkJpgYNGgj9bG5uXuXficvl4uHDh7h27RquXr2Khw8fCsYeOTo6YurUqVBWVq5w0tDQgJmZWbXz5eXLl7hy5QquXLmC27dvC3r8VqxYAVtbW8H3+MtbBQUF6OnpVXvdIyLC8+fPcfnyZVy6dAn37t0Dj8eDoqIiLl68CF1d3XL/k2U/N2vWDJqamlXm83g8PHr0CJcuXcKlS5fw+PFjAEDHjh1x6NAhoeXVv29bt25d7XK7pKQEYWFhuHjxIi5evCjosZwyZQq8vLwqXBbKy8tDTU2t0t7FL2VlZeHq1au4dOkSLl++LDhVx759+9C9e/cKl+VycnLQ09NDo0aNqs1/+/YtLl26hIsXLyI0NBQlJSXQ1NTEzZs3oaamVuG6SE5ODsbGxlBTU6s2X1ysJ0WGeDweeXp60pYtW6rc+pHUu3fvaMyYMXT8+PEqt9olFRQURHPnzqXQ0FAqLS2Vev7q1avp999/pxcvXhCfz5dqdklJCXl6etKff/5Jnz59kmo2EVFcXBx5eXnR9evXZTJvzp07R+vXr6eEhASpZxMR7dy5k0JCQiTqjagOl8ulO3fuSHX8krRcu3aNANDixYsrfQ2fz6fg4GCysrKqcIuxR48etHTpUjp//jy9e/euRt/drKwsunjxIi1YsIC+//57UlRUpLt370qcV5HMzEw6ffo0eXp6koWFhVTHXRB97vkKCgqi6dOn09ixY6X+v5yZmUknT56kCRMm0LZt26SaTUSUnJxMe/bsoWHDhlFUVJRUs/l8Pr148YL8/f3J1dW1yp4YSZT9ry1cuJB8fHykmk1ElJ+fT0FBQeTp6UknTpyQer4oWE8KwzDfjKtXr8LJyQnLli3D8uXLK3xNdHQ0Tp06hZSUFHz8+FFwm5WVBeDzuKY7d+7IpKcnPz8faWlpIvWESoKIwOVyoaSkJLN8ACL19jGMKERdf9f6eVIYhmGkrexw6Kq67C0tLSscjFtcXIyUlBSkpKQgMzOzykHpktLU1Kx2d0VNyMnJyaxAKctnmK+BFSkMw9R7ZWMzFCQ4u6yqqipMTExgYmIi7WYxDFNDdeoCgwzDMJIQpSeFYZj6h/1HMwxTb/F4PJSWlgqKFAUFBRCRzM4GzTBM7WJFCsMw9Za8vDzs7OwQGBgIAHj48CFsbGwEpw9gGKZ+Y0UKwzD1lpycHNq2bYsjR44AAM6ePQtVVdV6cQ0whmGqx4oUhmHqNWdnZ6Gfhw4d+pVawjCMtLEihWGYamVnZwtdS6oiX+uUS/b29kJnxx0yZMhXaQfDMNLHihSGYapUVFQkUu/ExYsXkZiYWAstEtagQQP06dMHwOcTshkbG9d6GxiGkQ1WpDAMUykul4tRo0YhIiKi2vOIGBsbo1evXnjy5EntNO4LZbt82K4ehvlvYUUKwzAVIiJMmzYNQUFBaNOmTbUXh7SwsEBpaSlsbGxw69at2mnk/5QVKcOGDavVz2UYRrZYkcIwTIV8fX2xf/9+AIC5uXm1r5eXl4eNjQ1yc3Ph5OSEc+fOybqJAubm5rCzs0OHDh1q7TMZhpE9VqQwDFPO+vXr4efnJ/i5Xbt2Ir2vX79+AD5f1t7d3R27d++WSfv+TU5ODgEBAewaMwzzH8OKFIb5Bohz5M2hQ4cwf/58ocdE6UkBgL59+wru8/l8TJs2DStXrqyVI39EbSPDMPUHK1IY5j8oJycHV69exbJly+Ds7Izbt2+L/F47OzuEhoYC+P+r34paALRv3x76+vqCn11cXNClSxcUFhaK0XqGYZjP2FWQGaaeIyIkJSXh7t27uHfvHu7evYvnz5+DiCAvL48TJ07AxsZG5LxmzZph8eLFAIBdu3Zh+/btaNOmjUjvlZOTQ9++fZGWloZ79+4hPDwc+/btg4aGhkS/G8Mw3zbWk8Iw9VxxcTE2b96M8ePHY+fOnXj27Jlg98r+/fvh7u4uVt7ff/+NI0eOwNTUFBMnTsSVK1egrq4u8vtdXFxw9OhR+Pr6Ij09HUuWLBHr8xmGYcqwnhSGqSW3b99GWFgYFBUVoaSkBCUlpXL3+/btCyMjI7FyVVVV8f3330NPTw8ZGRmCx7dv344JEyaI3U5/f39wuVz4+vpCUVERTZo0Eev9Hh4eAABvb28cOnQIO3bswKRJk2BpaSl2WxiG+bbJ0dc6l7UU5ObmQltbGzk5OWjQoMHXbk69QUQyOwqCy+WipKREZt37iYmJSE9PR4cOHWTyGStWrEBycjJatmwpNDVp0gTy8jXreCwqKoKDgwPu3r1b7jkDAwNs2bIF7u7uYv1t7t+/j59//hkPHjyAoqIi1NXVkZubiz/++APz5s0Tu40fP36EqakpGjdujISEBCgrK4ud8aVLly5h0KBB6NGjB+7evVvjecgwzH+DyOtvqsdycnIIAOXk5NTq5xYWFtLkyZNp+/btFB8fT3w+X6r5UVFRNHz4cAoICKCnT58Sj8eTar6/vz85OTnRqlWrKCwsjAoLC6WWzefzyd7eniwsLMjT05P27NlDT58+JS6XK5X8nJwcMjIyIjk5OWrdujUNHz6cVqxYQefPn6fExMQaz6vHjx+TkpISARCalJWVqXXr1vTHH39QaWmpyHl8Pp9evHhBGzZsoP79+5OKikq57ClTplBmZqZY7fz7779p5MiRgozBgwdTXFwcDRgwgFasWCHury3wyy+/EADasmWLxBn/NmTIEAJA+/btk1omw9QVfD5f6uuAL0lz+fxvPB6P0tPTZZZfFVHX36xIEQOfz6eSkhLKzs6mBQsWCFYQzZo1o3HjxtGBAwfo7du3EmXzeDzKy8ujlJQUevXqFVlaWgry9fT0yNXVlTZv3kwxMTFir4g5HA6lp6fTmzdvKCoqioKCgkhZWVmQr6SkRD179qQFCxZQUFAQffr0SeTsoqIievfuHUVFRdHVq1fpyJEjNGPGjHIrYg0NDbKxsSFvb28KCwsTKTsvL49evHhBV69epb1799KyZcto0qRJ1KpVq3L5ZZOrq6tIf4OcnBy6d+8e7dmzh+bMmUP29vbUtGnTSnMHDBhA9+/fF6nd2dnZdPbsWfL09KTmzZsL5bRp00ZQBLVp04Zu3bolUuaX82TRokWkqqpKAKhTp04UEhIieD4sLEziBeanT59IXV2d9PX1pbpgTExMJFVVVWrUqBFlZGRILZepPdLeUPrS8+fPKTY2VibZT58+pZ9++kkm37u3b9/SqlWraOTIkVIvUvLz8+no0aPk7Oxco42OivD5fIqKiqL58+eTsbEx3bt3T6r5ohJ1/c1291Til19+wbVr11BYWCg08Xi8at/bu3dvbN26FZ07d670NT169EBGRgby8/ORl5eHgoICkdqloqKCCRMmYPXq1WjUqFGFr4mOjsa4ceOQk5OD7OxskbPl5OTQr18/TJgwAaNGjar0NOhbt27F+vXrkZ6ejvz8fJGzHRwcMGXKFAwZMgQqKiqVvtbd3R0hISHIzs4WKVtdXR0TJkyAl5cX2rdvX+Vr09PTYWlpiffv35d7zsDAAB06dEBycjLi4+MBAIMHD8aSJUvQvXt3kdpy9OhRTJgwQfA90dTUhJ2dHZycnODo6AhdXV3o6+vDx8cHv/76K1RVVUXKLdO7d2/cvXsX+vr6WLVqFSZNmgQFBQWxMiqzfft2zJo1C35+fvD29pZKZpmVK1di6dKlEu+Gqg6fz5fprqTU1FQ0btxYJp9RVFSEo0ePYvLkyRLvhqVKduGmp6fj/PnzyM7OLnfuG1Hk5eVh8+bNaNSoEaZPny54vLi4GM+ePcPjx48RHR2NH374AaNHjxarvdeuXcOGDRtw48YNJCcnw8DAADk5Ofj777+RlJQkdLtixQp06dJFpOzCwkKcOnUKu3fvxv3799GvXz/8+eefSE1NrXD69OkTrl27JtLftrCwEIGBgfjzzz9x48YNEBG8vLzg4OCArKysCqfWrVtj48aN1WZzuVzcuHEDR44cQWBgoGC5vWbNGmhoaCAvL6/Cafz48Rg/fny1+S9fvsTx48dx4sQJwRXNGzZsCG9vbxQWFqKgoKDC2+3bt8vkTM5sd08NjRw5kjQ1Nalx48bUokULMjc3JysrK+rTpw/179+fevbsKbSFrKenR1OnTqXQ0FCRdm00adKEdHV1qXnz5tS+fXv67rvvyM7OjoYOHUpjxoyhTp06CbLl5OTIzs6O9u/fT1lZWdVmP378mDQ1NalZs2bUoUMHsra2JmdnZxo9ejTNmDGDfH19SV9fX5Dfrl07Wrt2Lb17906kebNx40Zq1KgRmZubU58+fcjV1ZWmTZtGixcvpk2bNtHmzZsF2UZGRrR06VJKSkoSKZuIaPjw4WRmZka2trY0btw4+vXXX2nHjh108eJFevLkCa1du5YAkKmpKW3YsEGkeVKGz+dTy5Yt6YcffqCZM2fStm3b6NatW0K9R5aWljRs2DCKiooSObfM06dPqUuXLrRw4UK6desWlZSUCD3//v17ev78udi5ZQIDA8nHx0cm33k+n083btyg3NxcqWcXFRXR6dOnZdYtfvbsWdLT06MDBw5IPZvP59N3331H7du3p7y8PKlmR0VFUfv27QkAHTlyRKKM58+f0/z58wU/p6Wl0a5du8jBwYEUFBQIAGlpaVFxcbHImUVFRbRx40Zq3LgxAaCtW7fS5s2bacKECWRhYSHILZtGjRolUm5hYSHt2bNH8DsDIDU1NeratSs1bNiw0p7Mw4cPV5v97Nkz8vLyIm1t7UpzKpuq2uXB5/MpPDycJk+eTFpaWmJnW1lZVdnuR48e0U8//SS0TBZn8vX1rTSbw+HQ1q1bycLCQqJsABQaGlrtvJcE60mRsblz5+LAgQNwdXWFh4cH7OzsoKSkJJVsPp+P9u3bo0GDBhg9ejQ8PDzQtGlTqWQDQHx8PHr37o2RI0di/Pjx6Natm1QH0m7evBm3b9/GlClT0L9/f6lt6ZdZtmwZunfvjgEDBkg9m8vlIjY2tspeMKbuWb16NRYvXowzZ85g+PDhUs2+ffs2bGxs4OjoiODgYKlkcrlc+Pn5Yfny5eByuZg8eTI2btwILS0tkTP4fD62bt0Kb29vDBkyBHZ2djh9+jRu3bol6MmzsLCAu7s73NzcRLq0AZfLxZ9//okVK1bgw4cPFb5GSUkJnTp1gqWlJbp27QpLS0tYWFhUeZh6amoqtm/fju3btyM9Pb3c8woKCmjevDlMTEzQsmXLcrdNmzattKejoKAAq1evRkBAQIU9u9ra2rC3t4eBgQH09fVhYGBQbtLU1Ky07UlJSTh58iTu3buHe/fuCR1BBwA9e/aEs7MzGjZsCF1dXTRs2FBo0tHRqXLdkJmZiTt37iAsLAxhYWF4/Pgx+Hy+4Pmff/4ZVlZW0NLSqnDS0NCosheIw+EgMjISN2/exM2bN3Hnzh0UFxcD+Nwz/+eff0JXVxcaGhpQV1cvd6usrCyTAy1YT4oMlW1xirNlIo6cnByKj4+XSTYRUWpqarktfGmS1XxhmMqMGTOGAMhkbMOgQYMIgNDYH3Hl5+cLxh+9evWKevToQQBIX1+fLly4IHZecnIyOTg4VLjl26VLF1q9erVYyxAej0cnTpyg1q1bV5hpaWlJ+/bto8ePH4u97ODz+XT79m3atGkTeXp6krW1dbnejpMnT4o7C8rhcrkUGxtLBw8eJC8vL+rRowepqKiQoqIiPXv2rMb5RJ9/l5cvX9K+ffto0qRJ1K5dOzIyMpJqD1tOTg5dvnyZfHx8qGfPnuTq6iq1bKLPy+ewsDBatmwZ/fDDD7R582ap5ouK9aQwDPPNsLKyQkxMDAoLC2t82PSXXrx4gQ4dOqBr166IioqSaIuSiDBy5EgYGRmhVatWmD9/PgoLC+Hi4oJdu3ahcePGYuWdOXMG06ZNQ2ZmptDjM2fOxNy5c9G6dWux25icnIzw8HB8/PgRKSkp+Pjxo2BKSUkBl8vFgwcP0KlTJ7GzK0JESElJQWxsLF68eIH09HQsX75c6j2jHA4HsbGx4HA4Io8rE1d6ejrk5eWhq6srk/yCggKoqanJbMwVj8eT+nwXhajrb1akMAxTr/H5fGhpacHY2BhxcXFSzZ48eTL279+P48ePY+TIkRJl+Pv7w8fHB8rKyigtLYWWlhYCAgIwfvx4sYqe3NxczJ49G4cOHarweVNTU9y6dQvGxsYStbMqeXl5KC0thZ6entSzmW8TK1IYhvkmvH37Fi1btsSwYcMQGBhY47yyI4U+fvwIExMTGBoa4vXr15Ue7VaVa9euYcCAAYIxBrq6urh//77I10L60suXL5GWlgZVVVWoqKgIpi9/VlVVlaidDFPbRF1/s28zwzD12suXLwGIfqXm6ly7dg2lpaW4d+8eSktL8fPPP0u04k9ISMDIkSOFBkFmZmZiypQpOH/+vNi7B8zNzaX2OzJMfcGKFIZh6qWUlBTcunUL//zzDwDpFSmvX7/GokWLICcnh4YNG2LSpEliZxQUFMDFxQVZWVkAgJYtW2L48OEYPnw4vv/+e3Z5AIYREStSGIapl/T09DB27Fg0bNgQABAcHIzLly/j6NGjNSoC3rx5g7y8PACAhoYGrKyssHfvXvTp00ek9xMRJk2ahNLSUvz6668YPnw4unbtKrPrZTHMfxkrUhimHvn06ZPYR4P8VykrK8PY2Bhv374FABw7dgyHDh2qcS9FQkKC4H5BQQG8vLxELlCAz3+jpUuXon379qwwYZgaYn2ODFNP5ObmYs2aNV+7GXWKqamp4L6JiQlGjRpV48w3b94I7s+bNw+zZ88W6/36+vro0KEDK1AYRgpYkcIw9cSNGzdw+vRp1OMD8qTuyyLF19e3xke28Hg8JCUlAQBGjBgBf3//GuUxDFMzrEhhmFrE5/MREhIi0XsvX76M5ORkREVFSblV9VdZkWJkZCTSRdaq8+HDB5SWlqJPnz44ePAgG+DKMF8Z+w9kmFqSn58PNzc3wSGz4iAiXLlyBQBw/vx5sd6bnJyMFy9eiP2Z9YGZmRkAYMGCBVVeWVtUb968Qbt27XD+/Hmxr1DNMIz0sSKFYWrB+/fv0adPHwQGBmLw4MFiv//Zs2dITk4GIH6R0rRpU4wePRpr164Fl8sV+7PrMlNTU+jr62PKlClSySsoKMCVK1dkdopzhmHEw4oUhpGxiIgIdO/eHU+ePEGnTp3QsmVLsTMuX74suB8bG4vXr1+L/F55eXlMmTIFv/76K3r27Innz5+L/fl1lampKebNm1flFXjFMXjwYIn+PgzDyAYrUhimGmlpaYJeDHEdOXIEtra2SE1NBQCJelEACHb1lAkKChLr/RMmTICWlhYiIyNhaWmJVatWgcPhSNSWukRXVxezZs2SWh47Iodh6hZWpDBMBT58+IAtW7bA1tYWLi4uaNSokVjv5/P5+PXXXzFu3DiUlJQIHh8yZIjYbcnOzsaLFy/QsWNHAICNjY1Qz4ootLS08OOPPwL4fGXYJUuW4Pvvv0dMTIzY7alL5OTkoKGh8bWbwTCMjLAihWH+JzExEevWrUOPHj1gbGyMOXPmIC4uDqdOnRJ7UGZRURH69euHgQMHCh4zMDCQ6HLxXC4Xr1+/xqBBgwAAS5cuxeHDh8U+FNnLy0vo548fPyIgIEBw6naGYZi6hp1xlqnXeDyeYHdMcnIyevfuLfbl5AsLCzFu3DicO3dO6HFFRUWcOXMGzZo1E7tdGhoaaNWqFW7dugUtLS20aNFC4mu2lPXiKCgoAPj8O0vSpjZt2sDJyQnBwcEAABUVFaxevVpwWnmGYZi6hhUpTL1x/fp1XLhwAR8/fhQUJSkpKeDxeFBWVsauXbvELlAAQF1dHTt27EBkZCTevXsneHzLli3o3bu3RG0lIkyePBkFBQXYtWsXOnTogIyMDImyypQVKV9eVVdcs2fPxqtXrzBixAj8/vvvcHFxQWhoKDvclmGYOokVKd+YvLw8pKWlQV9fH5qamlIfKLht2zaEhoZCQUEBioqKUFBQELrfrFkzzJs3T6JxBL1798bmzZtx6dIloccNDAwQGBiInj17StTm0NBQ/Pjjj3j//j3k5eXB5/MxefJkTJ8+XaI8ANi9ezdCQ0Nhb28PT09PyMnJ1ai4AIR7UiTl5OSETZs2YeDAgYiPj0dgYCCmTp2KgwcPskGjDMPUOaxIkcDLly9x7tw5tG/fHh06dICZmZlgBSIN69evR1hYGExNTWFmZgZTU1OYmprCxMSkxlu8KioqmDBhAu7evQtVVVXo6+uXm5ycnNC3b1+J8keNGgU/Pz+8f/++3HMTJ06El5eXRAXKw4cPsW3btnJna7W0tMT58+dhbGwsdmZRURF8fX2xefNmyMnJwcfHB5qamrh48SK2bdsm8Ur77du3mD9/PjQ0NLBnzx5BTk3PXiqNIkVeXl5whNGhQ4fQu3dvHD58GB06dICPj0+N2scwDCN1VI/l5OQQAMrJyanVz+Xz+eTg4EAACACpqKhQ586dafTo0bRq1SoKDAyk5ORkibK5XC49efKEGjRoIMj/cmrWrBktWbKECgsLxcrl8XgUFxdHhw8fJg8PjwqzW7ZsSUePHiUejydW9rt372jXrl00bNgw0tTULJdrampKISEhYmUSERUWFtKBAweoW7dugqwWLVpQ27ZtCQB5eHhQQUGB2LlERJGRkWRubk4AyMTEhMLDw4mIKDw8nD58+CBRJpHwd2P79u0S51Rk7dq1BIACAwOllvn27VsyMDAgOTk5On/+vNRyGYZhqiLq+psVKZXg8/mUkpJC9+7do2PHjtGaNWvI09OTHBwcqFWrVqSsrFzhir5du3a0c+fOaleehYWF9OTJEzp+/DgtXbqU3N3dqVOnTqSiolJhLgBycnISrEyr8+HDBzp37hz5+vqSnZ0daWtrV5qrp6dHGzdupOLiYpGyS0pKKDQ0lObPn08dOnQQyjIyMiJXV1cCQPLy8rRgwQKxC4nExETy9vYmXV1dQa6joyNduHCBuFwueXh40KpVq4jP54uVS0TE4XDot99+I0VFRQJAU6ZModzcXLFzKrNnzx4CQLa2tmIXe9Xx9/cnAHTmzBmp5t67d49UVFRIQ0ODnjx5ItVshvmvk+by49/S0tLowYMHMsnOz8+n7du30/Pnz2WSXx1WpNSQk5NTpSt1LS0tMjExEXrM3t6eLl++LNKKqaSkhJSUlMrlKisrU8eOHcnd3Z2+++47weMuLi4UGRkpctsvXbpULrt58+bk5uZGfn5+dPPmTTI2NiY1NTX69ddfKTs7W6x5M23aNEGukpIS9e3bl/z9/enZs2fE5/Pp8uXL1LVrV4qKihIrl+hzT1KTJk0IAGlra9PcuXMpPj5e6DWvX78WO7dMcHAwASB9fX26cOGCxDkV4fP5ZGdnR+rq6pSQkCDVbCKiLVu2kKamJp07d07q2UeOHCEANGvWLIne//HjR1qzZo3QY3w+n+Lj42nv3r00fvx4Gjp0qBRaWrH379/TmzdvZJYfGxsrs5URn8+nc+fOEZfLlUl+XFwc7d69WybZubm5tGLFihr37lW0wZGXl0dHjhwhZ2dniouLkyi3tLSUdu7cWS4/PT2dzpw5Q7NmzaLevXtLtEGRlpZGP//8M82YMUPwGI/Ho9evX9OpU6fI19eXnJycyNPTU+zspKQk8vLyIjU1Nbp27RoRfV7fRUZG0tGjR2nZsmU0atQosrKyol27domV/ffff9OCBQtIR0eHGjduTPn5+fT69WsKCQmh/fv307Jly2jixInUr18/MjMzo2fPnondflGwIqWGli9fToMGDSIvLy9av349nT17lqKioigzM5P4fD4FBASQsrIyTZw4kWJiYsTOHz58OE2YMIF+//13CgoKolevXhGHwxE8b2NjQ6NHj5boC5KSkkJOTk60dOlS+uuvv+iff/4Rev7Dhw80ZcoUiXdrBAcH09SpUykwMLDCBffbt2+Ffhdx7dy5k3bv3k35+fkSZ1QlICCA0tLSZJLN4XDo0aNHMsmWtatXr4q9sC4uLqbff/+dNDU1aeLEifT48WPasmULubm5kYGBgVChrK2tLfZuSlFNmjSJFBQU6Pbt21LP5vP51LVrV2rQoIHYBb0ojh07RgBo2rRpUs++du0aaWtrk5ycHD19+lRquYWFhbR+/Xpq1KgRAaDvv/9eohwej0e///47RUdHE9HnouLixYs0evRoUldXF3x3Nm3aJHZ2WFgYdezYkXr37k1ZWVkUFBREc+fOpc6dO5fbOBSnwM3OzqYlS5YIdm2PHTuW5syZQz/88EOFu+m7desmcvbz589p3LhxpKCgIHi/tbW1YMPt35OCggItWbKk2lw+n0/h4eHk5uZG8vLygvd/eb+iSVtbm27evCly+8XBihQZCwwMLLfylxY+ny+TLfEv8xmmJvh8Pl24cIFatWpV5W7EYcOG0fr16+nRo0c1KlyrkpSURIqKimRqaiqTz3jw4AEBoAEDBkg9Ozk5mRo2bEgqKioUGxsr1ext27aRgoICKSoqir21/aW8vDzat28fEf1/z0SzZs0IAKmrq9OiRYsoKytL7NyUlBTB+K3AwECaOXOmoOgBQMbGxuTt7S32RuDHjx9p7Nixghx1dXWhlbGioiJZW1vTokWL6MaNGyIXzgUFBfT7779Tw4YNK/3Om5iYkKurK61cuZIuXrxIHz9+FCn73r17NGTIkEpzDQ0NydbWlqZOnUp//PEH/fXXXxQfH0+lpaVV5vJ4PDp27BhZWVlVmt2jRw/y8PAgb29v2rZtG/3111/09OlTmRTkX2JFCsMwMvHy5UtydHQst7CTk5OjUaNG0Y4dOyg2NlbqY3IqU7b7ce/evTLJnzhxIgGgoKAgqeby+XwaMGAAAaD169fXOK9sTBmHw6FZs2YRAGrYsCGFhoZKnJmTk0O9evWiESNG0JEjR8jMzEzQ+zBnzhyJN9SCg4NJX1+/3HeoYcOGNHXqVAoLCxP7+8PhcGjjxo2kpaVVLtfS0pK8vb0pODiY8vLyxMotLi6mgICASnszDA0N6caNG5SZmSlWbpno6GiaPXs2OTk5kZmZmVAvCgCaOXOmRLllioqKKDo6mg4ePEgLFiwgJycnMjIyEuT/+eefNcqXFCtSGIaRKj6fT/v27SMTExNq0KABycnJlVtgr1y5slbb9O7dO1JSUqLmzZtTSUmJ1POzsrJITU2NjIyMpN5Ls3v3bgJAP/zwQ40LusePH9Pq1aspKytL0DvRpk0bevXqlcSZWVlZ1KNHD6G/r7y8PE2ePJnevn0rUWZJSQktWLCg3PfGwMCAzp8/L/Hf8Pbt29SpU6dKewu8vLwk7kEuLi6mV69e0a1bt+jo0aO0bt06+vnnn8nDw4P69OlDpqamtHXrVomyK1JSUkLx8fF08eJF2rhxI3l5edH79++lll8mMzOTbt++TcePH/8qveuirr/liMS8AEgdkpubC21tbeTk5KBBgwZfuzkM803h8/nIz89Hbm4ucnNzkZOTg7y8PPTt2xdKSkq10obZs2dj69at2LFjR41OvleZgIAA/PTTT1ixYgWWLl1a47zCwkKoq6sjKSkJFhYWAICnT5/CxMRE4kwOh4PvvvsOAFBcXIy4uDjY29vj1KlTEl/yIDMzE46OjoiMjBQ81q5dO5w/fx5t27aVKDMxMREjR47Eo0ePKnx+/vz58Pf3l+j8REVFRSgoKEBBQQEKCwsrvD948GDo6upK1HZG+kRdf7MihWGYeiU/Px/y8vLIycmBiYkJGjVqhISEBLEvAlmVssVix44dER8fj7dv30p0vaR/mzFjBhYuXIjx48fj9u3b2L17Nzw9PWuUuWrVKixZskTw88yZM7Fp0yaJC8X09HQ4ODjgyZMn5Z6bN28e/P39xT4xIYfDwalTp8Dn86GpqQktLa0Kb5WVlSVqM1P/iLr+ZmecZRimXnn8+DEOHDgAHR0dlJSUwMfHR6oFCp/Px/Lly+Hg4IAXL15g2LBhUilQuFwuTp06hUuXLuH9+/cYMGAApkyZUqPM2NhY/Pbbb0KPJScn48mTJxJdcTstLQ12dnZ4/vw5DAwM0LVrV1haWqJr167o2rUrTExMJDpzspKSEsaMGSP2+xiGFSkMw9QrL168wIEDB6CgoAA9PT24ubkhPz8fmpqaUsnPyMjAypUrcfToUQDA9OnTBT0rNbm+0e3bt5GZmYnMzEwAgJGREc6dOwdXV1eJcrlcLiZOnAgOhyN4rFOnThg0aBA6dOggdh4R4c6dO/j9999haWmJpk2bip3BMNJWs4uJMAzD1LIXL14A+HwNo4yMDJiZmeHp06dSy//nn38AfB5DAQDjxo3DnDlzanwBxnPnzgn9fO3aNZiZmUmcu3HjRjx69Ajy8vJwcXHBzZs3ERMTgylTpkBdXV3sPDk5Obi6umLgwIGsQGHqDNaTwnxzMjMzoaioyMYx1VOxsbGC+0pKSggMDIS1tbXU8suKlDJt27bFH3/8UaNMPp+P8+fPC362tbXFqVOn0LhxY4ny4uPjsWnTJnh7e2PmzJlo0aJFjdrHMHUVK1KYb87JkydhamoKR0fHr90URgJlPSlycnI4fPiw1P+OXxYpzZo1w+nTp2s8oPPRo0dITk4G8PmIpPXr19foCKiioiK8fv1aoh4ThqlP2O4ept4pKSmp0fsPHjyIu3fvSvz+ixcvgs/n16gNjGSysrKQkpICANixYwc8PDyk/hllRYqKigoCAwPRpEmTGmcGBgZCWVkZ+/btw5YtW2p8iHaXLl1YgcJ8E1iRwtQriYmJWL16tcTvj4+Px4MHD3Dnzh2JMyIjIzF37lzU46P3662yXpTVq1dj2rRpMvmMsiJl586dEh0h829EhIiICISFhWHSpEk1zmOYbwkrUph6IyoqCj179kTz5s0lzjh06BAAICIiQuioCHF07twZAQEBWLRokcTtYCTz4sUL/PLLL/D19ZXZZ/zzzz+YPXs2fvzxR6nkFRUV4dixY+jRo4dU8hjmW8KKFKZeuHbtGmxtbZGWlgZ7e3uJMvh8Pg4fPgzg84qjopNViaLsTKFr167FmjVrJMpgJNO1a1f88ccfNT7Spirt2rXD+vXrpZanrq4OQ0NDqeUxzLeEFSmMTOXk5ODgwYMS91oAwJEjRzBw4EDk5+fD1NQULVu2lCjn1q1beP/+veBnSXf5mJiYQENDAwCwaNEibNq0SaIcRnzdunWTaYECAAsXLqy10/ozDFM1VqQwMvHixQvMmDFDcKZOSRb6RAR/f3+MGzcOXC4XACTuRQH+f1dPGUmLFHl5eXTq1Enw888//4w9e/aInXPhwgX4+Pjg2bNnErWDkQ1WoDBM3cGKFEZITQaD8ng8nD9/HnZ2dujQoQN27twJGxsbjB8/XqJ2zJ8/Hz4+PkKP29nZSdS2/Px8pKSkYMSIEQCAfv36ISYmRuLft3PnzoL76urq2Lhxo9hFz+DBg5GYmAgLCwt07twZ69atExymyjAMwwCQ3YWYq5aVlUVubm50+vRpiTNEvdQzU7GCggK6c+cObdq0icaMGUPTp0+nwsJCsXNyc3PJz8+PWrRoIXR5dG1tbfrw4YPE7ePxeLRr1y6hzE+fPkmcRUS0bt06AkCnTp2ijx8/UnFxsUR527ZtIwUFBdLS0qIGDRpQZmamRDnZ2dlkamoq+P3k5OTIzs6ODhw4wL7XDMP8Z4m6/q71k7m5u7sLLpd95swZmZzn4L+Kz+cjJycHKioqEp0jITY2Frdv38ajR48QGRmJ2NhYwfk+bG1tcfHiRaipqYmdq6GhAQsLi3JjBTZs2FCjC7MVFBTgt99+g6KiItasWYNjx46hUaNGEmWVXRQtOzsbAKCjo1OjU39bWFhg9erV4HA4WLJkCTZs2ICVK1eKnaOtrY2TJ0/C2toaHA4HRIQbN24gKSkJampq7P+DYZhvW+3UTOUlJCQQANaT8i+XL18mX19f8vT0JBcXF/rhhx+offv2pK+vTwoKCjRr1iwqKSmRKDsxMZF69eol1DMBgGxtbSk/P1/iNvN4PFq2bJlQpqOjI/H5fIkziYjmzZtHAGjBggVERHT79u0a5RERzZo1iwDQw4cPa5RTXFxMPB6PcnJySFdXlzQ1NSk9PV3ivC1btgjNPycnJ0pLS6tRGxmGYeoqUdffrEgRE4fDIQ8PD2rWrBkZGRmRsbExtWjRglq2bEmmpqbUpk0b2r59u2D3grgyMzOpR48e5QoJNTU1OnLkiMTt5vP5dPnyZbKwsJBqgVJQUEDu7u4EgJo1a0bLly8nLS0tevfuncSZREQxMTGkoKBAxsbGlJeXV6OsL40ZM4YA0KtXr6SWuXbtWgJAPj4+Emfw+XxydXUlANStWzcCQIaGhnTr1i2ptZPo8/8Mh8ORaibDMIy4WJEiIxwOhy5cuEBKSkrlCglzc3O6f/++RLk8Ho9CQkJo1KhRpKKiIpTbunVrevr0qcRtjoiIIBsbG0Fe+/btpVKgvH//niwtLQkAde/enT5+/Ejp6em0d+9eiTOJPs8La2trAkDnzp2rUda/DRw4kABItZciLy+PGjduTOrq6pSamipxTlZWFnXt2pU4HA4tW7aM5OTkSF5enpYvX05cLrfa9/P5fPrw4QPdu3ePjh8/Tn5+fjRz5kwaNGgQWVhYkLa2Njk7O0tcQDMMw0gLK1Kk6NOnT3T48GEaOXIk6ejolCtOFBUVafHixRINwnz37h399ttvZGJiIshr2bIl6evrEwBycXGh7OxsidodFxdHw4cPF+T269ePHj16ROfPn69xgfLgwQNq2rQpAaBRo0YJDbit6W6effv2EQAaOHBgjbP+rWx3l6S7zCrzxx9/EACaN29ejXL++ecfwf3Q0FDBPO7bty8lJydX+/7w8HCyt7cv9x0tmxYuXEjBwcGUnJws9XnLMAwjKlak1FBMTAytXr2arK2tSV5eXrCQb9KkCU2aNImmTJlCAMjS0pKePHkiVnZJSQmdPn2anJycSE5OjgCQiooKjRo1ikJCQojH41HXrl3Jz89PohVJcnIyTZ06lRQUFAgAde3ala5evSrI+vvvv2tUoBw7doxUVVUJAK1atUqqK7v09HTS09MjNTU1SkxMlFpumQ4dOpC6urrUcwsKCsjAwIBUVVXp48ePUstNTU0lJycnAkCNGzemK1euiPS+27dvk52dXaXFCgDS1dUlGxsbmjVrFu3cuZPu3r1LBQUFUmv7v7GiiKmLZP29lHV+TXtGq+ql5fF4Mmv/f7JIKS4uppycHMH0/v17mRUpXw4w7d69Oy1fvpwePXok+EKsWLGCfv/9d4n276elpZGioiIBoC5dulBAQABlZGQIvebx48cSt/3AgQMEgExMTOjYsWNS7d7n8/nk5ORE6urqdPbsWanllomIiKCmTZvS6tWrpZ5NROTi4kK2trYyyd60aRMZGxvTnTt3pJrL4/HIz8+PFBQUyN3dXaz3flmsmJmZ0eHDh8nb25sGDBhAxsbG5QqX8PBwidtZ0cKMx+PRrVu3aMKECfTDDz9InF2dU6dO0aFDh2SWv3fvXnr58qVMsrlcLq1atUpmPcKxsbFS35gow+fzafXq1XTy5EmpZxMRPXv2jOzt7SkuLk7q2RkZGbRq1Srq1q0blZaWSpxTUa9sQUEBHT9+nAYNGkRjxoyRODshIYHu3r0r9FhhYSFduXKFfvrpJ2rTpg1t3bpVouxXr17R0KFDhXpo8/LyKCQkhH777TdydHSkBg0aUGxsrMTtr8p/skj59xEkZZMs/rnPnTtH+/fvp5SUlAqfl+R8Il/avXs3RUVF1SijMlwulw4cOCD1XRplsrOzKSYmRibZRJ+/vJKev+RrKi4ulmm7IyIiKCsrS6L3hoWFkb29fbkxM1lZWRQeHk47duygmTNnSpyfmppKc+bMEfyclJREy5cvF9qN2axZM4nPc1OVU6dOCc5ZI4v8+/fvk4KCApmamspk0PFvv/1GAGjatGlSz3737h0ZGRkRALp586ZUs/Pz82nEiBGCArgmK/p/y83NpXnz5gl6gxcvXixx1tu3b4X+bklJSfTTTz+RhoYGASANDQ169OiRRNmXL1+m2bNnE9Hn8YpXrlyhsWPHCrLLetvF3VDkcDi0bt06UlNTo9DQUHr58iVt3LiRHB0dBb3YZT3wS5YsESs7MzOTfv75Z1JSUiJ9fX06duwYeXl5UdeuXYX2GgCgFi1a0I0bN8TKF5VMihRTU1PS0dEReTI1NaWEhIQKs+p6TwrD/BfJYiUbHh5OhoaG1KtXLzp48CD17dtXaCHq4eFBwcHBIg3+FVdZgaKuri71I6GIPm9ZtmrVigCIvKtNHPfu3SMFBQVq0qSJ1A85z8jIIHNzcwJAy5cvl2r227dvqUuXLoKe5pqctJHP59OLFy8E90+cOEGGhoYEgIyNjens2bMS9wI9fvyYDA0NicfjUVRUFI0cOVJQ+BgYGNDq1avL9WKLoqSkhH755RcCQEOHDqXZs2cLxhGWHZk3b948io6OFrvtkZGR1LVrV0GWgYGBUOHQpk0b+umnn+jy5cti7Z7lcDi0bds20tPTq3BjX0FBgbp160Zz5syhkydP0vv378WdLWL5T/ak/Nt/8TwpDFNf8Pl8WrdunWCh/+X03Xff0Y4dOyQ+E68oZF2gEBFNmzaNANCsWbOknp2dnU0tW7YkAHT16lWpZhcUFFDPnj0JAE2fPr3Gu3oyMjIEvce3b9+mxo0bEwAaO3ZsjXuVfXx8aOHChfTy5UvBrkklJSVauHBhjcbOBQcHk6amJsnJyVG/fv0E3822bdvSnj17qKioSKLc169fC04T8OWkra1NkydPptDQUIkK8vz8fPrll1/K9WaoqanRkCFDaPv27ZVu9FfnypUrgqM6/z2NHj2aQkNDazSvJcGKFIZhZCYrK4uGDh1aboHXv39/me3DJiLBmJnaKFD++usvAkDt2rWTyYDisnP2/Pzzz1LJKysIS0tLBYfau7q6SqUHa9SoUXT79m3atWsXKSkpkby8PK1bt67Gxc/GjRsJADVv3lxwWod+/frVePzP3r17yxXPvXv3pqCgoBqN0Tt69ChpaWmV+94vWrRI4qKH6HNBVVaw/ntq2LAhPX/+XOLsiIgImjt3Lo0fP54GDx5MvXv3pg4dOpChoSGpqalR8+bNa3TqBEmxIoVhGJmIjIwUGmvy5aSqqkoXL16Uyedev36dOnfuLNMCJTk5mUpLSyk1NZX09fVJUVGRIiMjpZZftvI9fPgwAaDOnTtLbRzTmDFjKCEhgX788UcCQDY2NjVacZY5ffq0YDdDWY+BNHZ9HTt2TOi706RJEzpx4kSNCh8+n09Lliwp973U1NSs0diK/Px8mjhxYrlcOTk5atCgAZmbm9Pr168lzg4ODqa//vqLAgMD6fTp03Ts2DE6dOgQ7d+/n3bv3k1BQUESt706xcXFUvmeiKvOXrunTNk1VDIzM79WExiGEVNqair++usvTJ8+Hbq6umjYsGG5W01NTal/Lp/Px8KFCxETE4NRo0ZBRUUFly9fho2NjVQ/58CBA9DT00NwcDDS0tKwatUqWFlZSSWbiODm5obNmzdj5syZUFNTw/Hjx6GiolLj7ISEBBw/fhwPHjzAmzdv0LlzZwQFBUFVVbVGuWlpaZgxYwYA4NWrV2jWrBlu3LiBtm3b1ij32rVrmDBhgtBjubm5+PDhA3g8HhQVxV81lZaWYurUqTh48KDgsWbNmqFVq1YwMzNDZGQkrK2tJZonHz58wMSJE/HTTz9BU1MTWlpa0NTUhLq6erlrlolLQ0MDjo6ONcqoCWl8/2Sqdmqm/+ft7U1ubm6CK7/q6OiQm5sbTZ06Vews1pPCMN+GEydOCG3BDhgwgJ48eSL1w2o7d+4sOOOztbW1VAcaR0dHCwYoAqAdO3ZILdvT01Mwb5SUlCgsLKzG84bP55OLi0u53gNnZ+cajTV6+PCh0NEv2traNHToUNq8eTM9ffpU4t0x58+fpw0bNlBQUBDFxsbWeKwMI1t1fnePNLAihWH++0pKSsjMzKzcroEdO3ZItYh49eqV0GdYWlqSr6+v1HbH+Pj4lCu0Tp06VePcDx8+lLtMh6GhYY3OeUNEdOTIkXJHlWzatEniw9SJiOLj46lly5bk6OhIfn5+9OjRI5kc9cXUfXV+dw/DMIwo9u7di4SEBACAlpYWfHx8MHfuXGhoaEj1c86ePSv0c35+PsaOHSuV7nAiwokTJ4Qea926NYYOHVrj7PXr14PD4QAAFBQUMHfuXCxbtgxaWloSZyYnJ8PLywsKCgoYOnQoZs6ciX79+tV414aKigri4+OhrKxcoxzm2yFHRPS1GyGp3NxcaGtrIycnBw0aNPjazWEYRsry8/NhZmaG7OxszJw5E4sWLUKjRo1k8lndunVDVFQUAGDIkCE4dOgQtLW1pZIdERGBnj17Avg8BmHfvn3w8PCocW56ejpatGiBwsJC2NjYYOvWrejYsWONMokIU6ZMgZGRETw9PWFkZFTjdjLMv4m6/mY9KQzD1FmbNm2Co6MjfvvtN7Rs2VJmn5OYmIioqCjIyclhxYoVWLRoEeTl5aWWX9aLYm5ujrNnz8Lc3FwquVu2bEGDBg2we/dujB49usY9HQDA5XKxc+dOKCkpSaGFDFMzrEhhGKbOGjNmDExMTGT+OWfPnoW2tjaOHTsGZ2dnqWbzeDycOnUKHh4e2Lt3r9SOfiosLISCggLi4uKk1uMDgBUnTJ3CihSGYeqs2ihQACA+Ph6RkZFo1aqV1LMfPHgAX19feHl5SaWno4y6ujqWLVsmtTyGqYvYmBSGYb5pRITCwkKpD8Qtw+FwWO8Ew/yLqOtv6e10ZRiGqYfk5ORkVqAAbPcJw9QEK1IYhmEYhqmT6vWYlLI9Vbm5uV+5JQzDMAzDiKpsvV3diJN6XaTk5eUBAIyNjb9ySxiGYRiGEVdeXl6VR6fV64GzfD4fHz9+hJaWllRHzefm5sLY2Bjv379nA3LFxOZdzbD5Jzk27yTH5p3k2LyTDBEhLy8PhoaGVZ6TqF73pMjLy8v0bIgNGjRgXzoJsXlXM2z+SY7NO8mxeSc5Nu/EJ8r5fdjAWYZhGIZh6iRWpDAMwzAMUyexIqUCKioqWLZsmVSufvqtYfOuZtj8kxybd5Jj805ybN7JVr0eOMswDMMwzH8X60lhGIZhGKZOYkUKwzAMwzB1EitSGIZhGIapk+r1eVJqU3Z2NtauXQs9PT1kZGQgOjoaDg4O8Pb2/tpNq/PK5l12djYSExORmZkJX19fuLm5fe2m1SvZ2dnw9PSEh4cHm3df8Pf3R0ZGBvT09JCQkAAHBwc2f0TAvk+SYcuz2sWKFBFkZ2fDx8cHu3btEnrMxMQEjx49wunTp79i6+q2snnn5+cHHR0dAEB0dDSsrKzg5ubG5p0I3N3doaurCwA4c+YMPDw8vnKL6o5p06bBzMwMfn5+gsccHByQmZmJqVOnfsWW1V3s+yQ5tjz7Coip1q5duwgAXb9+XehxNzc3AkAJCQlfqWV1n7e3N2VlZZV73M/Pr8J5ylQuISGBANDp06e/dlPqhKioKKpoEVbZ44ww9n0SH1ue1T42JkUE3bp1E1TNXyrbGsnOzq7dBtUjZ86cgZWVVbnH7e3tAYBteTAS27VrFywtLcs9XvbYmTNnartJzH8cW57VPlakiMDS0hJZWVmCL2KZkJAQmJqaVrigZD4zNTVFZmZmucfLir6KnmMYUZT9/1VER0cH169fr+UWMf91bHlW+9iYFAmdOXMGmZmZuHHjxtduSp1W2YoiOjoaANC9e/fabA7zH5KYmFhuw6GMrq4uIiMja7lFzH8dW57VPlakiCExMRFnzpzBo0ePkJ2djaSkpAp3AzHV27VrF3R0dNjgRkYi1e1i1dHRYbthmVrDlmeyw3b3iMHU1BTe3t7Ys2cPHBwcYGVlJaigGdGFhIQgJCQEe/bsYUUewzD1GlueyRYrUiSgo6MDb29v2Nvbw8rKComJiV+7SfWKu7s7du3axc4rwEisupUB60VhagtbnsnWN7G7x8zMTKwBTbq6urh+/Xqlg/LKuLu7Y/fu3fDx8fnPjuqW9rxzd3eHr6/vN9MtKqvvHlO1zMxMNg8ZmfvWlmdfwzdRpCQkJNTo/VZWVoKVx5fKDkH+L+/yqem8+5KPjw+6d+/+TZ2lV5rzjxGmo6NTaQGYnZ2Nbt261XKLmG/Jt7g8+xrY7h4RREdHV7hLp2wByQ5Brt7u3buhp6dX7h969+7dX6lFTH03YsSIKne1Ojg41GJrmG8JW57VHlakiMDe3h5RUVHlHi/rWWGnla5aSEgIsrOzK9ziYGMHGEm5u7sjOjq63HcoJCQEACo9PJlhaoItz2rXN7G7p6Z27doFT09PodHbiYmJ8Pf3x9SpU9mAqSokJiZi2rRpsLe3h4+PD4D//0cue44RTdl8YyeM+sze3h5ubm5Yu3at0LV7/Pz8cPr0aXakRTXY90l8bHlW++SIiL52I+qDsgtLlZ1/oewLyQqUqpmZmVXZJR8VFcV2l1XDx8cHiYmJgt2OOjo6sLe3h66urtBFL79V7CrI4mHfJ8mx5VntY0UKwzAMwzB1EhuTwjAMwzBMncSKFIZhGIZh6iRWpDAMwzAMUyexIoVhGIZhmDqJFSkMwzAMw9RJrEhhGIZhGKZOYkUKwzAMwzB1EitSGIZhGIapk1iRwjAMwzBMncSKFIZhGIZh6iRWpDAMwzAMUyexIoVhGIZhmDqJFSkMwzAMw9RJ/wfiknPkYzAkbgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# use latex for font rendering\n", + "plt.rc('text', usetex=True)\n", + "\n", + "# scale ticks and labels\n", + "plt.rc('xtick', labelsize=16)\n", + "plt.rc('ytick', labelsize=16)\n", + "\n", + "L=3\n", + "numpoints = 20\n", + "\n", + "X, Y = np.meshgrid(np.arange(-L,L, 2*L/numpoints), np.arange(-1,L, 2*L/numpoints))\n", + "U = X ** 2*(Y-X) +Y**5\n", + "V = Y**2*(Y-2*X)\n", + "\n", + "# normalize arrows\n", + "N = np.sqrt(U**2 + V**2)\n", + "U = U/N\n", + "V = V/N\n", + "\n", + "fig, ax = plt.subplots()\n", + "q = ax.quiver(X, Y, U, V)\n", + "ax.quiverkey(q, X=0.3, Y=1.1, U=10,\n", + " label='Quiver key, length = 10', labelpos='E')\n", + "\n", + "# plot a point at the origin\n", + "ax.plot(0,0, 'ro')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# save the figure\n", + "fig.savefig('unstable_attractor.pdf', bbox_inches='tight')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Mathematics/5th/Introduction_to_control_theory/Images/unstable_attractor.pdf b/Mathematics/5th/Introduction_to_control_theory/Images/unstable_attractor.pdf new file mode 100644 index 0000000000000000000000000000000000000000..6e49bbd530b24e8695241eb617cf5c0788c1f9a8 GIT binary patch literal 108562 zcmZU)b8u!&&^H|0cCOgAv9YzWZC|l%n;YBN*tTt(8*|^i-{<+N-m0(8A5(p1divKr zHQm!a=TIn#NieW5vcpkSZvm=0;8+0600(1hIDUQrlbWZa8Gz}Bk*krdg9U&|$;iUY z1;F}mfC@lR5YEir^uK}J{||$NgS{(&?f(v7(o{6IHZySraQzP{?%^t_>T2X_24Mf6 z7fMF1u4c~m0FM7iI3`s~BU3AT3jpW;_BuP5sG7L~bpDAIllTY4%)=GHByIN(g6RLY zKmNCs2I&1ia9IBT3jBxrKlILK|Iqypd?pn$7YCrT$v=Jm!~ajdyqT$$k*I^mKZ(r$ z9yT6sMlMzs9&R>fc2*Vu8#4XHPjZdka@f0L%Ykkg&4-X8{0{gzZ1Gh?$uNSUnUNiwM@~(* z?5(Yq^Y*EeZxlgNfUkEiF*vf+q`fekGz2>ef8i#^xel1v2HNL!w;$c}%v9x6n%G!E zM9=TpxBQr|s0hqiq0eZcud?31n?hfgLf=n^{%>5ppZiY+{vV3HN25Y#f4^@MiT?ij z`!O5;`C9aSd+R6tUT5H6;r*3Car^TrUugGlQ|YHkb&kZM$NRPa_lJSsn~?w8pusuY z-(sPUL#E!P=OT)~T3SLEYh5Fw5AphbT%QkIgF5~mz3Ug?A#PBsnhAr@N zhC}f*UiXx#eH}yjrC0Z${1U&sxDey#S9D3`^4DyN*v`gyP*I}dC&cVK*{m|V9;)&? zLXgEg+*IO|^@p-d9(+)l8!(j>HwS3Bj8iS-HSwdD)Jsy&Gk;#$!XXtXRiv)y@x9jF zO!OGX^Md;&pe1r^{qB6*{U)Nt*EAsO&pRoF7}Vw}&) z-mX+-Ov3VPJKqw!B;D5c)-(4~e9353+508ihchw6zSAekN&6t3X?niY6P5R0ynfZq zW#&th@r|pN_buFFnLw^vq7yH)nkOrdC_ z>yJ6m$Ezlyx|4m{uo@krs!ebCYoDXwt{-oEa2iOgRMk}51gL^pg1aMkPD^iS@OylC zdB*<9O;s*6e5cA^DQR*RlB#E(scQh1kYZoy;PG_*P0r&Vmj+Nm<>SaT#$5u#z~%*k zxW^@=cO+kuTa+G30)}kppM*4H`ft#3wI1&spObPiMtTIfUivHcST6kXN24h1ytP?z zXWUGeYt`G598}A+M-P$ePke)_4&6g}kr69@P?|zR9noKKzZvXAnrdg_=PMQL9A|1v zf@~wTwu8wPem#^&wqEP>a2!sL`#BN~Qzr@aTq1kKwkQpf{&epfgjd(2_{;vX@tEor zwz*+tb@QHD9cp%2Aa>>Wg16Q2Gyk{_f@ot{g#0Kpjd13R*xv39Dco3~0|Y>gTQTna$O|59WcZ#1x??QD+niD`&RYfS}XqSKg(}j3*F#m{fpoB3crP}dM zYyqi7#Wfe`NWmuOnc8(2leV)qzAg8LwYWiq)tcGyNBv+Z&Q_#!9M{2<#@`s(^ZZvttstxJH z2Uh2Oh;|bQX8K$q*#YtLMd`2~ssXNS@5Vt(1mftVER|Pm8^h1+pWQ#uX_T~;dWH?V zD0j#BQe=ava|HtS5ePxJWfP(1t1v1CR$Yipyd~3%K803%KoZ`sxz)K(PyMchgt1ir-f=?F{Fv|i1(R#;VW znMaA#>fa+mhszFgwlv+Q<7JHlq;2ua^IDw+(7Yn>N*$7p5^AYB)WPL4)UZWUi?yVq z)gapjqeu9#b;X*$j}j4qHT(M|(gR?}XuV;N7Csa3Pp!+Mh3 zsU>fh1RKHeZBCV^BKPVYEi4GygYE( zBZW{ z!js1L>3xB;jgBd2d%`c%ndR7ksfWp8MV(IRrBJgb1D=&RQrZ3VRQ=;a_vv{ZP@{2Q z?+On4a4w#bA#)Oea0xB>tBK~#91~Th(R>y8+&JzM!5;;uxkv_H>b&bY)~$j9{ud8g z9ddvyojzm3W=S&BKKIZI$_xtk9K`9|@@l8=FEIWXY9J^upGdTO<246q2IGqE-97xX z18FKmPbT$}dY|tawTReNAh5JHxCdR4JXHrE-~XdxA%SHmmEq5jxj1WOoK%`6{BQ5Z zb^K#PfSp%^+zR$yHzccAR_H2(68uS)AxX6rJ?C0};a`WS?7)ZFI#+>$lMK3o9}nbY zf&P%_)`(>|i4}8thrah37)ReAz45s|JVW1EDVBsj@;_8aUchNXhpN=`k~2kx9d2|j zM&23v3+Fh*18dpbhcILvZdl$$R^hD_q>VVm^R>XlR!oPPI!*KAf??((1){omY($bV zmqlIZKrCBIFMul~s2AsfM8A~=-<3xb$SQbe>f??V%y0lr@a*W7zB!12p>ssN$}eD9 zs$4)%1>WM#cSEdB46JaSrrKY}(S#IHkixhU2p{^UZTT%KlLfLgxs=xdC9&P8I8lqt z7CnPmnITLevRva~pMYsnW%6<4YdmC%Py9fp;tChCnM28OFKR~yqnn`4D7*@l!VKj8 zMkqM!LG40kFm21Th( zuhK(sANCT#usQgOgbL5Ec#p8QhNDRn!xc^FUs6<8Nze!vm9?7nZJe2~40O{R%q2?| znTF@24KIV|I4j*h9If8_qx&;ESed!<>9_l%*@P^;_oouM5xhtXYGh4wX!3M`k+e1$ zC7w_VL}S-MCH={PyZm5eGMBk3T#rmOwi!;W>Wten2kH22PhDN)5deIbFwGAa59x+K z6$xYKpyRy>?oN~o8|HBGKS#@~=#h&b>T+5B}&7g;FAY7*W+6dd8=KBOf3ws6Rq z3CILFg;!x5sZo~veON(FycK?6MCs3^Aa!ai8r#Bnn0GZDuGf}0?R-i-R>0e{KgAuQ zJ!AK(XYnn4{!`Ef)!Xzj3WC1C70GZKP16YyHntHc_wNUJFUgjBlot2IV}hh6Z4i7Z z@0ch(sXHzv_&G952zl9e``biyvn*`?l3PMY8M_B9wAJaiJ$aU}*VhRnUr0Nd@9OL0 zBu3v~q%91fkTu5WI{G#58-aAmjJTtaRng=o0)y|E_Bx}#3^qOSIk;T(xX+DI^edQ# zy5~wCTew}f)A|e$VM05h-SO^qvOFq~JGmf@}xw{dX!sRvg7v;q%h_e8eG zb67T`?d^a#3d1J*f`a^LoqT%5R?$_+Wi7?2zTp&zu5ZmL3rT|kunSklcLmFLK4t+x+Ii6(sAm5QQQR! zl9t9kZN{|41yciIAxk(r0V}`3cBJvMI+htc=5pwUCk@WLjpT(b&yw}18wks_m~mXG zcQu=cKsko-ov#|yuC~BcWjJN>?e)b(0(kQ>(DuyaD+UV@Xj!3Z%<~WrcNafV%G=q0 zV|b-DS2{PG+>U#T$ZtDaSr%wK6Gbq@*bqW$QQIn3!3s|!nBV(^@Ko9P3CpXKQDf^| z9UIHgPYuf=ZN7|KXs%VrxxkV@*qBRX>9jstHgf3wdK1}(x02z|>mDU@3iJC_YG3%` z3AUDwi>s;Hn^_V_ViU&6t{cd!gkF-;3R%aOp*3$H_Z^)cG4Z6GA%OFqVz5$ zDx@}cD~2+#`114sw#A!)w~k_IKIp|Bsc5-9m+vw;=u_${@g&eF`wq?2XpR(d-;~C3 zHnexci2C8?M|KIxfnEJNMG-&O9~jJA$1)sB^BOd2YiDLef*B3>qW6?Jt8X!Hu<>Lq z1Brve00Nw&8X^2jp9Pt+)s?DXLM-jpmBw^#QjxOjbanv811WnW$&1tF3o|C&)*&Y z=Z_g;-v!Yanbpxdj~HNei`_-^ydcD;lID5WNV}cBzP!aO{ROhFN}Cxisdh-idQn~nGP4QC{ZiuCu<|y5Wi7MLHb#gLWdFR~ zTLY_ig9!|_I2z3V*FyL@;=<@Y^X{3q z$TZ?72UP;8*?>{uyC)XcAV3AtaD{uT;{wc{H^wCl86|tI?}3~;?35LOs$M`EK^h5W zNHl%6UfsuhRz>P72R;XnEE9+l&pP1v8QOt8ms8G=cS__Dg1~NvJUGLkt&NP1qlt2v z;%X#e!wcg%*jD8+V1kOKIzW=hwKEy>;_qa=fTVHt%+5h(&XndkL$aF&vFzVx=c@TU zoJstsmtzH#=*Zy0kc@QtF_1^9p!?c`qGm|`!2t|PY6T-9&ik<2-0%Z&ft(w(2+A&u zPG<_fLfL@SH!_Ph+OMn^0H=CE@lDf)Rg@LXfBmStu0 zcEerand=(wJHn-YhG{6U$qxho7ekdApZr6jrL~7P26ZtnD`*pA7j#sWAH^?}ac75K zOeI88A!m>2hfL(}MnN*{`Dx^-4_}TF+V4scJYkBL_&}zJiWiMB*1fS7t`!kvT%o6C zJF96&mV?;ap3i0b%DZ~hAyTBEl)+-U9y_)llCYEdt{A%n&Phi7388af?5*|qL98}6 z-PvzOFPET#y(k_|=KCT2jE3UqbEd@=FIX+wIbes}qXQ%~KMn7zz-ao>hxz;sPv!Kt zYv_z7)P1R@bpn>6c;*Uzuxfx%VM_%(R z>~@5DHm>ki7vho)C==EV`W;M8U|llYDMZiCQX~AzB`Cri8YvRQSj4_w61o8z4PimZ zB0NZCZQ%ypF;SNiX)7?w@|cNqGn z2K;IgVQ~$5J4eITEc3fY5SFWcnANI~I^31yYZ0S{5S-mvv;nM7aL(^juSfO@7;I;m z{=ogHESki1#t4k8RpJac={z7w895{podKoYgRc%Pj-XGKz17QTXwE=lsWN|wd zlFfA~fAzk>xOZ^Qfz(?LMIjE-5&c41qlWKI#|dQOrkfabx+xwVK^i98Bu_$l(Zf3n zFf~#*_)ohkh#~W7HJifk6RiiJLt5Yp&{6U1?H{H<1^$&M5<{|ty^l#X>Y9W#BO3i-uz z3$@DLQE5^&lOeJxKu3KcX>9WtaxxzkS6UA} z+XSq_mYrCPltZo9Cyt9SF5M(e+H?mB$mefy-+4XoeBs^c$2lH)CPgzrZ&31)%Kg86 z36qBmN7`4OU=5OmPqDx?{W7IKA_R`i5QchU-$T)3C(0;nw7jvJ%f?%I?raVHpoklj8C9KScHl^t>!Z*7=|-_JGiCS*fV;jf4R13Gt*N zLqTDi5CPot93oK|4JA$Dw$ z@<4BQU}MMQxA=bV3ge%poKWnbM?BgUjdy*b8B!KUq~BPxc|J4`LariWK64q!L9*F& z^~11S-#d6lVOmw;w7+pN!{Y(^{wAoONG!jK95Jlg5ak>jXkE7Z){*>SYsoALXdk%# z?9^LaQqGg`uR;3@_=(>mBcf;f4`>2)npra^vKO-_$D;G)UC2R|BZaVr~^*&NR zV?+B%b<-ko2>mQJ+0($wn5)li4R8v9??6YtIrj#tlT6Oj#GY5z7=h?mGZ=)f=R|13 z1nI6?zn?CE7Ot(zh{}sim=g7l*B}q?z`uM;)x_Zx>WFGS1}cPuZVeV>p_Et}+BMg4 z1{Ixa=t32H8|`?%dDkS8#Iv3(mv`&LkOhs3kaV8cQ_&W{|0Mk?;F1^{PNp_F(~7JJ zdenEZFL$pqwXZpcG=j;A4iZ+ zxv+}99P*A>uGbgmoB1N1N4%tWWR?26TP@c);PisGkVVzX>KaVZJA1mQ1WsZNxsMGr zuq$e|ud$70Y7SSU}DZgWe_2$S> zfwU86##e8&q^+og4z;&)>CTUIp=8*jUzTV7-p^Z8KJ<>l^x4%Vsv0XKngsGB04efj zK95(Xcd(c27ST-xr`O8rX+QzA*X4KuD6yhc?0!}gdzCpFm`f;Uv7keH9=4>NGz;*R zG!5#l$>(=wxoaFpVLn%^VHOJam)yob329yVI3racsYSiDNkpPQg5!Y43Ocs-IF04j z5z>S;qcIqw={60?`e84%XV4?BsZP(}1iG3}Bi$98DTI0d&%7uWsEgX}GIj=37A-Cm z)YyOT(2z!(;X)yg*^=;Lxj{8oB8Sc5i1S*je6>n_YVH(1Ha$v%oLMr<(pAwqdxU4v zBfj(cun*`JWKe=6P-#l^#;j@<22mSeqH>i{H%F0s*6j_dUB}?5VW&>l4_7~m8$_Q{?F-)& zcR|M4JHib6z%(bHJjkKN;Jet;S8k9c2`uzlm)!VW)o>bvfhXq<95pT$!VUbu;dpRS z3vZnV;DD{rzmQq5P_^MAGzP&VtQJ#5e1W)+)B@p5uiES4!H6IhN^RlvSQ|A za$(2nOMqP-mpYd_PMpC_JPMr!bJz74etgZB=-`22Al*J2F~%Q|GKdCGn^J!&UaTV7 z;XmjWgU(nq9|0I5k6nYt0a6hSETqJxKImKtT zvw4@hqesv6{$;g{3?&cIe*@2j59P7q{T}4?13Z^9sL3_q;~$x?RNa#Yp!3BW2mdsPXhX!GT-^rRzApLq3m(Kf}M_vsG*Z^70?ey_uW| zcp1+*1m*bIR+fyBj_z{q6?u2(tVu7=_+_bhyqkzJhs;ly-Hud1ghTt9xbi`?Rp5yC z?YB0JlX-J<(Ns6<^M9at5;s7Cs8=kJ!H|-(R5OzYxRrT$fuW&1P=@)Ty$w`%aK3E` zTXl}VAmzs^v0FkykkVF{Lo zKzbaZS)k@^Gr8s3pw*i*VoH?c`-ja$>m%ZwCK822iU$$bs{T@8lZT}R<8Y`iGwct} zabXP@VY5+HnR0OiC=2Gz%H$B=5bms&68hIGS?S>@#5Df&=Qh<}?P?DmyX!M1@%ki1&j?#*+P|*1G^+TJ1xc+nw$xIR)-O_^; zZlfrb{Z=O-hiElpfe{9fF!9#C@M*-`yM_781=pQBzvWiWl;qK-i*ZUQ%J0~Si~HL% zn6K7@QbT@D{kHWb$S^l>Dt!~+Uy%HJ?~rj?Y{B+Dod+^WZU;x{df6u_wAX^))jHvQfp%3C~_fQ=KgnXXm`ypI2xkM)%CimpXa}F6pOI6yEQ; zLJ>Z}ZAGnKr={M!jAN;dtm^e5#;IVDyhMc~`&sCahfYehe*18m(gANF?Vc+{)~%Ye zXNoyh{_($-aDT22(~2zAeoNTD5PtvqgLrWPt?FG#at-UoN5zMgs+-vN8(v58?09Dl z952@W<0p;XYul~+RdNHY$xXS&-mS%{x))rUC-epwVg7`oC)hqR?Jl!Jf61L1luqX_ zYzL_+-sI%(p@t2lUF0h>whKp`=QxOjQ{O1JBPyBF&w)n-7)vArCy3WZvhZ%nyX5oz zgWEDR?fkQs;2EyhY!`3AtPjY5Q+^GGLp>j3?SVl4UXMY?Dz6Mhm#vs4=~#M1`wveVY)b!ymne`M_|+2P z-|{fld;2n$E#Z>#%F~9br2P$nwU%U@*7DH&x&iPF;_?UYBcQj^pJ+>G2vB7}0Q0yx zWp^Qt0sof!Rif4I*9e$D%4=A7Rp>9`8h%EC71lTxV;E+{Sq*0xGONuv++4D&;s`Dp za4BG~VxzX;?F#|izZ;%4bpS6kqy`;amhcaksC$Gc=B!5q?X{+!q&Kjk1sUhgrps+2 zj8VwdFuw460a*iV6!fv~47|iEhP4QjV2Z>j3(DWDv>H5|nipDdQPw&f=DG-*v_+xc0r76#~LiGf{lvF;9pP;k$* zQZFt|AYxETuvsR-xk~}lyhx}=O0r!43{ohRJLU@B&RE1G*pP-&uxZn`xVE{W$>$D8 z*w)OZe%bCe9K^D`dXyVk|0TyoUCw3tl8Lsb&;f%Y0y_{b{f zf)Y2&B%!S1K^XOh9)L}}a&@Befej@9uON(xkK9eTzAG!4_dSD32=7#{xik3 zrXi~|UE3<#6+)ZkXu&PbrfMLAaG}OYnplE&l!UcD@rKYJ>5a|`HnMddKX&wu!8;7}GJZ3_no*FVUD!|W> zo2dPvAeaR)>mU2R&qQN6eUOUki6?u5Ph@JXz44hm4Z$R6>%}8chublgou>^TU~D%R z!Y-lUt`LRa--ISHw_{jq-AlD$_-tf|N+3CpS|mF0%m?PAaclZ&K1muHe-1byYDeMW z7+Cp0V(~4J3W>``j~y63b4sJk`XOu|fX?vbiCDMH>{%Bw28mO55iG1r(>`y}o2lbb{zkiXYHZ#M*Id$ro?t zsD6Vfn?zw~G$ae0@C*dut-e*+IhwlpeT^#* zQJPnH!(f$IxcEYBS4G7sSyBx-+|yP=tDWSrYh z;l6`#tc1>k#F8|QdzuSbaMj0Nyrys+3K>5>Cm}kWQE~nyevokQz~&+7VZIjjmOJ%Q zDa%Q-e!X)@)OMvpxrvghtO5Yb)bpr77yGe~F|fRFkFFtuh}|1I=}c7ChzVW;hUs(t zr zc&W6L$)WwlURk?&;o?wcWW{=lmR*P}%{|X_s6tnpg>WU-5Ia!GtZ4s~kTd$N+Hj7a z>+m}h%WdC7qHivABw`+oeP5AV6Pu3@6Nw+XI{D*0>UYPa4oE#cs*G8Q@lxXfy@PJN zyRJiiGL46?=npm?sO+T7Jl39L%|Zv$o?k3n?>WPn5}M5*lxhaT$TysR@psIeU@%eL zd0!ZjNE$4ZW(W&JyUPA7^$j-(Mm#wwslALx*BKB7*y%%kPDUNmpz;5Xwo};b zBg62Ihf+x?_$66=#G9zJjLl7Cn@oJp;#FL77l!U+Ce0hhP-U%rxT~Ls+|jGW9>~pw z9xZ%~H?ZDZR5)dy**t_u)h>Ui1JQdwVrQ_q^VI5d8srv1y?gN>EP?`Bt@M_LVI>`$ za@AaT2uAGkoF>GS<32>%4I`TliQQ*nYmK)mcRuKjc#L`+8YIXU-o}(DanQweEpzKs zPcP_l9U^}h)7BZ<)GnKQ$R#*#n#U#w)f9!?rcL=8cF-9^W+PzNBRN4@wVQ4|t;3ty ztZmJMk}J!}7QN5i0Y_$>F7K1Jd0`~(AWo(VZv3eJAmVe`jMYMITVS+F54Cm@sU8{B z9VS9_VtppF#Qj?f|ITDm0nqWW_mHXSc2~-u8kSF&?rE+~@?qV@fYJgA&la%T6MoZc z)wc8d2fj=uO9V7t$!b{0u-2r5td0Sn{`l?Ds~mNlMdvB3E)k)j?d`hloFJw4(lHe?sGbM}F1sE3~!kH#CtDhOMbd}rw1Ey zuN8$OPd=5xP;BRERE^5b5ist}{q%_AbP<3@`I|TP0yor2#4Uzcr4!g@c*pe?O**~b z8Tx?9#HO_%5M>k`BMsjlu|sWksxliGSi<)dZ1T=su~949RT>CYF8T3?_QzJtC`oVL z-Jk<|&oW8a?R8O#s_``zX&Owuq4cxH&^OvCCo>2ugY}yD@Hr|Hxfo?6DeuDdh?e`1 zan9M#+)wu(W$Dw5pVdPLJyz{%O8C%G(sXC5MxW9r=s2y@yZl46>m}3<;^!?VGeqUi z9)e%++aew*aubWzbF9J%2rD%^e%W3zJaC`J2gRnbE2`*<*D1rTemahI_sK(lc0P5< z1-x%awe9le72osPG^chz;rL0dfl!QC3lwI!3l&``B=ZV%Ek$P9Me+3o=h^nb>ELy; zDaYB$lPKqM16x@il(!1i5hA=bVf@Mo4UB&&2my}9<^PI4B!|rvhx?LkJ4med<3H(t zh2^}K--U=YYi{>nF6j(~Cibw|*;}+F8r{PfcC{R)&n2N!mbopFds=vCmG>OKF%=4> z{g?-IAH6>Qt00eQ#sKog0YSaG`A+led)h|X)cr%CBM^+QK#c>S^=a1I_89+*xjPj*cQo9(p~sxD$p4E8E;x%rsj>Cu)-21pCDA|y(W z`emwvR=WnUNNu?hj<5tkJ2R-4&?HD$+E9jnKq)Iu^u0YCxT7i()Z!>WYg`NZW zYTfe}*%rJ84irguX|ZJ;9!185atiqD&yDw2h^Rs(0Et1e@(*UikYrje1Xqfyj95ek zFlwc?n{n2_T0MF*ZpZ=%KHciALRDn^EgB9lbRQPJ<~DlIe3`A?NS{Ds{up=X%;F00 zD9D;D2PUKQk2Rz@sEQ_hwhUK|sGx4t`^fdscdJ8PFtQ_wNNmMGYv9Al--Vs>5i5+b zbwxS;O#v|#YK8mKI@2B_V>Ch&uawD{KlAn26+|ACq`mIYj>WpsNJjC4N##(uhm(Od zLwF`7i>3=eT$4;qr+n%ttW#s-m8$U^xl`M)Cxng)Rr?)Vra^|n&)BJ#!jWd$Xp7LX zQt-(0mL`+m8m91JqiqSbdw^ zqZt9#U$7j9%0vpGj6qNBQ~DGh^Y*|^%`a?!p+7yO9zo;eDY73L^$wfEX?=N;;38tm z#Yym@*wf=M3h!D%nXA$TLiO@;DN??`qIs`dZA+I+(<>Pn4Snpn>-&>UOkYWE5>QaLY=gXjUzyf~2Jf!YeRGeAld^MhNr#AL)^`d9xW_c)aFQ;~C~7T4 z;0X6q16L0<@wElw26&VP{U!f$b-++;2BZs37Y7%y$GOy#kJtvk#}j_618jduwO^i< zyoNx42gR!BzUn4nJrQW6v_=dj16xc$oScNEwa9(InP{^`55tLJHKsB)$5vTzAO>Bid~5inNRqn zy7;lLmGw-lh_OmI^o~4L8MsL-Vn+WjCcye5kz)qilns zm_3v{Qln%h-nN^z&>>G)|Q} z4_e@a@G;ndBCA0_Mi4w%3Myfakp=o#ikfp9jR3^m1f;Q@y)@@RYl)$Rb(($p!<-#t z@%o}um9Z9j+f~DwX5OJ)jE6(!Gr_R^kCy%zN?}Hb7!tiiPJOf(*Ep z2KEuU_I+0uWLl%0-t-08KzJC^nY^9beyPyu1>sk_=4X@R&eD(^Bxk)X>|{dMUOcLI z6`;|P{@zT0`u#7Q18(>Tsg=uThy^^$i_{M^O{TJ_Ue-%4%O3b8{CSA0I(;d^<(0fM zWT<8bexikPelI+VaJ^EJIq(Y!P_D$4Kn^;&`LaCtu-D^@eTf{yqsum3TP#|h>{*x9 z#>7mteZgxF5}M=Foz7s~O&Laj`epyX@vVdnQ9w;MQ6eDmR~B^U(SCNU}@N6O;q<& zqk@DeVxVV%TwK!J^%B!rTM3gco0pDN*I@jsL$D6#Qmx!PA8QnS*pya-UqWQSGH=7J zOA6X{4DK7rO8Ez7;xf)J;NR6asj&#gE|5t1&>5PPQnPoMcL8?gikR-a;Z;e2e3coV zTh=#|B%J`-%ebFpYS(v6+1qMrV&ffT^VnF1zyh8$>XD6Q^Gk(-GvqUb`S~o)g(B@Ph|@!(N2pk?OUFIT;%-2ZguWRZ6`uzVm3$nT zs8y`nJ@Yk}4_*h|CBI26bi3b+PuZg@z=cTW%AR!ai_};eMVsFPu5*=&^k305Gy*!V ziCa5bx5W$P9-u?2AVapp%-@cR+-zJE83#))6|UZZf#J8>f3D2ElaZmqzO33OmTvC| zED`j5!3e?pQH+bxDk!-H62zv!QSIQ`6L_FcZ@-Ql)L`ddn?FeW%80bmB8|&xKVgxTgCS8fQt5N*DTyb$!Q9VN+va zb2=Ysu@J*bHZb@)B}^HRKCJSbJZ))e(@Dfr$%s;Fl#gw~E`Dh-M~iYg9pV3cdBQ)D!~yv+cM zEdo12(#hwksrAbE!A`6$yp4Vf#?a^x*0@8$xm!19v;X{2PzLJQ*NHOh+mrm3r`=_1 z3^c-TCG4#jRuE&^)cwM+7-%VNit?H@+e?6;JTXt`yP`2o&-8?#E>j`hNv#nUD>?K#FOI+%Hg zQ7DDRT0HR`>XG&m*8?5F&pStH7P!8*EhfV~1p(U~8MH+7ZweN>wijs79tK`=1(vl~ z)~Ld7$GY=8*dYeI%bH)n z7Zg3=9OHt2Y1ou113nv_!gzlwoWf(HR{=3zcaLfr=@I>ivW0x=lD|FlHBim4x%_Gw>r{Xue?in@0fNSj{A?4V;mN3w(&gmgnTc0JUJs$!hLKjG zT}1NaAqBbOk!g093sHYYA?Q$ed*zW5ig$u$@=bf{S%CBEXM0H=i59aSMVX?XV)tMV zHF1qX!Ddp%bsdVW#MzZe-Q0xsOC!$ro|6aI^p5?KzRQ?d{Xk@jH#0$=%4!JC3CC zkqsh(i<7z*C~1J@_6aldol6bicY2c;9h#!sY+It8h%r>@u*gMK+1CZHo;kT1myY{8 zAebmq&+G2f`7(L%TZW;>S9<@zA)@-;mNz9uU+CGt`n7+oTqxNMk)c4-yd>XoXM}@s z#X@xaNgFBi0HNt#_9fD;V7WFGIQr`lD=&~FuBdcZ5xI)q5bE(@ai~C`|Npxa=rMIy7kId#8S_ z0^rT1;HMk5&tMY{4C8$LZSHuXh;0e~0htw{nY{9>j*SDeQ&oVNy5ma^Tob!NGXdl46 zs3`Jvrt%m&(u!b$BPr0S8U-)74tb#vRGLp8)7Q*ijr&AEVq8e(&Dl=d6AyG*Q0^pI zie3swlRSIws()}H7ai#WKT;p|a8}M`pG9gu^L)vj(3obZRCY4*70$+EX-7*vp- zD}T9AdQHdT$vQ&?hidIt7|dqD8w3;)29Q`1Ek>Y@_$_&c%eHGC{Ih&D2@D?{_9Dpi z1T%JEKOP-}PytvfJUl-JMxn#CXuN&6HWQ!kj&|1^r&)qBThShhS*dIpM`P(wsNLT0 z)Z((DYRRF;^#?lDVXbYG^UOlU#+`31hx5LmTHs4n=Y{rdarfvsEwm93?k zcP_&|iUstdV3kjSEP#yatm6f2lsA^b19kgr1+m~?cts?z;8KiHd(i(!uJDkG&9}}S z8xcVh*qlpPN~)XN18HSAV)1TIl|K+WD3w!QC@A=TZf_h09ZC}xuI2cg%n@R+9kRkx zUVTA~{tFbTNqOuUg0pEK=eYQ?t|f#0L;m1zsH$^R6oLaYsv9-t98r(}338SiAc><} zznaBOx(`V`q9#Ke+>4O`gsu2Rg5qj}j>~26kj8k8o?UOOWJ%`=N+0H;ngB%XBEy1o z+q%_h!<^%ZB#4RoL#DnZ0_?HYB<*_LFv1Y1TgR?evnGvS@BHAM`fAn>w4(^qgE{;5 zb46Z*K5pfb7ye*2$$45Y-Q|Tt9W@cX*3&Dob?yOFY2rB3DJ);Dmyj!G0PaBuk?~Y4 z452nb&aIUDguXgjy5-&jH|JK* z3=J=1hIi3FsbW{c_d^l0(%9Iu^1k~;8^6KFdQ{#9hSdi1oa9}#3o$62hS6H+a(CCL zyeGCT!#mkn*!B;c;glO@UA&+&#N9DW(q|+LT^sBb3u2eiy<&Jo&7?d+3 z=e41+Rk?noXa49cO%#s55IgJT;BjjuZe`K8vZt(A91pDr$6nNuS;B}ai&^t=baGY@ z+0P=UYJg}LDMunxyC`r%Vk&wZ@pck;W?7~nWJEdRe8 zIznUt_q;TBO@U4qXOgXEOP=rT{}A?#;gvL9yKypcCbl`TZCexDwmES!v2AN&+qUgw zVq0hDdEe(d-*x_+A9YnNRn=P6y{o&r>fWjfrsdeRd2uRs>zotre%;uKTU%)GB~^%) z3CL!}Gi{NX1bfCobY{A2_fPSiP4Xwwq@B0aM;`GJbM=BCZ52DOf-#HD)-jzOiGIJo z(cUEBB-?RkWN1>F^Mn?=%J_K1W8;p=@C5A;Q6P6Qi0nGVbXjCXUkZ2b7;tMIsprD( zz!m&qsZ@Ixkqb2?V9}qdd6TZu(vl9Cz&n-Gdao0TbAn!T_?N@(_Z+2q>&EI!S7A2)tZ_Zb2@j^}4>QgJX$-SNjJFd#a}RrQ zd*0P8GoNB_2D{`Dsz4vn7WmXZl%>14xO5oiYyS8VXH*uucMR_H>3Aqjel@fFWJ>*Zwo%A zqenX3?0b=X72o89tvz}FycvC*Z9WO)EG-NW^Sf8MG7PSa?vgjubIy3n!>(Az&Ub}lP_L5>_|__76vVXMTdIK?`IinDpBIZqB`-)OlzE4UNbhe22MXv;QrRA?gl#Q@jjg-jn4 zxwp`F1QOj!v`f#ef!YJ1TD_%m3O;MQRU@B$9t8?-DxG_vl$~6rus0%GNG-B^sYk*+hD;JL*_Uu9=5$x zqPmiw;&&k8d8PK2e^!amh#|@5>KyvLjX=EDJ_TOTI)FR_ZL&W_^nHT{I5 zjv+#>vPq}BIhqAZct2%7N}8PGEIvH0>0ybAe$C^k_P*k94A|IX6v6it8t(lPiiL@g z%+8368SF7++};WoV;AeSn%|sCOT#XdV^WNk`AC^|4D(Zaa2wuMRV`}Cb@EwMkuGlJ z@+Xw_Ay=YpVpF})t=8=U@|C60s){KkB(gn_FwpApx)MGe^wbtvOP}>X$MSsWD7q+l z+Urj_e(}HjZ3aWm)O1QWH9V+JZ ziMh% zRdq`qOQ*K}3;QTdiMOX_9`pd^=ntO=wLz;})!_*}ksU3_aPsH` zmh`bhyq}_fpCg38HL(1@mJPiHsBWxvBQGMD;O zZ-Hy_Slh{6>1No8)sdhoIn$a&DHM*7u8_9EHgob8io%(fyhv~wu88Sf%=CA%OQLR$)tr;j(;Ef^FjlLdD?brUgamg&ay!Tr$L zkbu%cqXP%=t4B6Zu&A+T>_l7RCM@e;mz}~= zv1SAHXkHQuG>t4IRbbn{erwHjl`k^&(n;%^P z#r~;E@mC{TC_d^B^Ci8lJVVRHI_Gw5i3A#GMzphK4asbn3k#znYsrrC|pXpl*j{2cwvIxsWWOurU63d_h*&p)&qy5#t}Yf zdD!eLLJ;eWacur;Gt_L@J7hyd`+h!(H?1&=r}xYL5i`u40hWa7d;NI) z^EL%^#7`E}eJCfCnScihCeUPQyBz|)^hFO}o{q${pL&wccbrE*XqL@~qydYX^>#W| z>Khywa}J+fLjqk`r9ICDO+{|mc=8MHtf?U02HB)d8uhvlC@&F>AzQ~@xdzbCnQN@X zQ%oMrGg0<{xhMT4olY9O+fm3v@(9T4C`J!F&tinv;i!OQUT8LN{6b`a*$<-z=3)rd zydTW7r9@JiP=t5Fl@YLRFP$J3Wy<=PvDlk2vP1b7EW-OXDE5G|9~AY8STOZNZMYDP zP0SJYJpB@O=n`D!hm&}p!AJ}4SnD_4=H_N4mt!r6)^}dNYsgI7ZVdc>{icNdQNZuB z3O1LFc4BvBACH&6MC2S>N$ck}CwfTK_&qAaIT{i$ofOSd7`4Qqc*5aB#`%2dB>XmC z-NDi;=10L5_-~fVK66zf%R9YYS)O@R)ymA^@IS;du(mv^84#P%*~O8zO??CR2BRK} zRfFWNCIp2i{ZUP5D=l1ZD43f~63B4tLn}baey21a1h;UgQj(Le6*HgvIR-lx@_#HD zc3M4flq1-q1}^r};Hj@3-8>)Pw;F#i6ox++7J=wk95N2Ej!X;&O3WWAiv-rR!otoB>x-yuP`>uf&`_^++&~t9x13X5=FyP9oa7>B+Y#mO4=qH5zCWME60)5XZU#h<`5{nAS z+}Kj>(ZR-Za_g>3CHwdiJCSfWGBXerX1IB&M9%PCUJCB~MeA?v)OzRab8zJCZP|E- zCG&XUJQg4Bmd1Qd%cjmoQ^M2&>ca*bt}0v85J~~|lCy5{#&?}+(aQ7|c%ws{;DOqf z>=)W4jtD{`-7MuQrf2L_z&zAn@#>9+^?f_VW8-!-Ux^*oN(-T!@r`%W`jL6`6(?my z&Yit2%eCni^0Zmgq~;M_4YJcMi?+Rm;F%JChgaBwq>1XKBCtRqv{@CWpZ{!Q@^CD6Bc+p)oK zss=hUQ>)v{vKfr) zgWx}An!+uWwTkH}IWMx2k#iPj_l~l2Z{X15F`TAQ(^R^5)wMT&e~ZCWq@&L27&`9P zT!6=6{`)N;V@=871`iUAO;taH1nc5qt&~z^L-O%1CTrgIfaZ5y6IT#Ut~g+SCFtOO z=Rmx+n9~@MaggxHxptAf7SQ$u)HF&6se=48pL9Cetb{@Dy!;m1Zw*fBLwl%R8ea>A z_{p_OzUDuD5e47&44~^WPhno%cXzjx0FU*hp9xcS9H!d_700AaDSq>nCEEwvC$Z8q zp`wz}`~&gB!_7>Y8gNZ>3`OOrs?BOf+#sk*xc3!*#pfeEz+MV@mv`z4wnOsoew>!p+aGy=l5()P?5%|HWH7$8+fL1lo5GGtoaX=rs7(yhq#)Q+b z^PcX(p&er9*kc#JwcfCEludXY6k3kqGU?(`-S_+$VaA(VR$rR!S%%VAe)JXZ{U+?7)|wAomU z{u${{4``@@yJw8Dxd;;BWaEMKm`sWVjOMoz4DCNdQTG`{VzgeA98p}U1mqNrYUAfv zOm?|Fr{6C;`D}YCcRmwG+2pn268%KOgA;6eXnrdvE(a9kzghgL*B+u1219?d=fAGt z87Pbml-)a~qNUB61RItP>i`Z!1)Lw!HqJ`Z|Fx?x1%g~sjP(h4KVV?cUYcT(xrC69 z$MkebRYF=A33=t-vtSKhFn4=kv{)njc1ZnvtX{O6laR|UaxI09>^j=1HhKX102ijj zvBdx8w%Iw5E!;_H@GZJwvTk#gsVU_TMTipA(;sq@B0n1#cq#H&Qy>=o^$;a-Z#6dM z)*`4i*T`FkRVVE4OUISDO<>xYc++BIcMsEg@O00? zJVEVSVi+LHa)WANNyr?S0lT7|47gx(U2hH%nb~iUsg%Zws``viCFNAFfdC(S?uOA` zWRI{((8OAnG6*_~%TsvQ?VtMPdpE4btAI2GGKF~6_0cYl%vE8n`@nm z=N{2h`K&Ilh|x_2;vQv&jl?axF3zlo0+_jWEmg*QRLh06u` zS>31k5lm*ysBOeMXh!MW#3hAgXUiZM{moeh?{{h;B%_iWkKlVAXZ)FL0xN$+$su7G z2dCP$+Y=uOeGj~b_{_Zob_C&)$BG?Vs@ZsH)H$DYeh} z`7Xvw#Xy=lB+}&BDxTV6waRglsGw{V&AL~;%^bc#ejI_8FtKMKg+w*DJc0Y7s^_aU^AEhjZQirm(a~&nctXiN zvlj=H>#HUj1IMrv#>#wE%~XDH7LPQ5%|z zr_b#?K!ZNxkAmBPD4GC;yft*wUUuq}6wfto4hElk<-S`A01oQyt?w1uyQ(|nG=-=c z@D|ms3xJxoyPO4XLzKopZHvaIGjw*Wkg;!lqm`SMniP!`%JDthgLmO_Uxji9NhpoF z9BL8tyMlcwhq{MMrK4|$HnyK6W(czHzOphR^@NVR=~LioZA}vy&zbYw_SdJ{nokjk z?QEm{n|XJDR|F+OaiWOoxo^%nI28wi$Nr63>$u9tgdZmQ>#Nrx3|zRtKI>#%LuQu| zMmQG>t#u|jZ!%(*EMuj_LLm=ku}$GNlNJtLj9iE|uh4_OJW0^8@@^i9bB&1@CZct3 zC*?q|U=#;}lWLaDt{fE|)*l!DNv5_8V#h&tmkA_K{;1jW5)$xfsw6oncoqi8f(G>@ z5R&_P3HlP3`9w;r?*rr|STN4^l|Y{-qvwljaqad$!Az!A=d+&x%bD<&kV^+rH9){2 z4Go3;GC8CgU2Z8ii*Cg1bYoc3Kn7?=CRZkc<&EU7Qm4eL1n2{t-NAESHsXFVj9Gmg(haDG#j^eF$L&@j_&Ch z>_Nm(y)eAnJShydJJ!M}gNA?+$0%PDhz z?*YTRe7$R|#~#Mhw5goj^Wyx?=4~$2dXjw{78b8$HIvmXe0~jpEt}T8rJOVsU(bX! zx-kuHts?m-+E%d^lTU{J?uE8q8;0+{dOUjSp*cqYCm}I%quN2!)X5kkw>KfP-Xfa? z%d~!@gf-ZXNX0U4z%zq){(Gs2PITn(YaOA;CTjaK%DG*(H3OYoYN1GQvak zY^fKCO?zaGIufqXW`j~#MdI#(e(|5Sk3_;CGp<-$hz!R*x4crfn4CPg#2xE5&&QVw z=1x&5q}sguK%u3jn^CLT{yXf>81Pt+-O$tb2vWM5V$-qb_-^Tv@@x9H_Mv&RL#jku zSJlEB3Xaa5z04?^`fJ$Kw$(x#p{54hidH~Fk6;jUqy)BeX!mx6aceZ;6vI)PN#%W@%=bF~Vbb)kE)| zCGRz4m?aL;Sx3Z^3)8oF*{K~}o{zmf1mB-{zK?RzcTa6%K5qdZkI`?~?lP>9mDr^X z7fF{c`^rPxxh!3gA!rewE(}roRY=$up|axv3zvI!80W5+YYL){eM}#3yfMuM!yj(M zM^ms}3b&W3+CFbbx*spLKF@uhN%(8HRhs+&R6gR-ZA z-^ZtL-}}$Eci)#ezK?@F-!iAagYSnHtG?I1?+5wpz?nvliUOaza-WyFyuU2#F{R-R zUc*1H>3pBxx8C38e4pArU$=aHE`2|6Mvv+6KVRv5ZvjHx&qMSuMVW#&!{6%2H6bJ< zZ!fHWEhb}Yuf}w{Ol0$EsVjrtY;j3sI$Fk&vkV_W`xaUh@Z$cok$s?l_UZC|9OB;< z-`~pZjA2KGylNE(E|u&0#$guLS`qt_-+4cEWzI()^F+!D&V3>jByGiVYT2*Jj=L&u z1%Iwd6q1uaCiNybwS8O`vV10~{3w5FShY3t#{Xcd_j%?iwR8zlO^$sbVR^r3lG`FC zlH2rswSLOJUbC4IF>uJE9Xg8swAqDHhvvgP>GF94wDvw^39bjNuh;edu-C;!$if}p zx)Yck?c;;Z`q4J?dGZ{i=cC+oRMZU0`uO=FbWMbCi?|u}qWQ8J{8?@pe+={V#&aSO zogpt)xaP}&V%x=oqsbl-xasrC@;3Emy(a1cL8pNE*2Qi=^!;%z;_!aYw(oNs-xZn2 zKsij7=JP;EAxR42K>Wqy{mJqv`*knW^b8**?t{ivM3K*Th4IuK*KFaH;PFQ?GOi-t zzc{@=*6JqZJl^ubx%V^teBXzT;&nIGM>eba_SnMM zSdkuO>i=%FW}=wCD{CyV1Apg=8=ah52~LeG?`n_cowD)TF#bKx3S#Cf z6cRb6%)5gvmsjc(TX@8!d(OcpnvFbOwRL*wMDi9hzv}MGr4+N=;&7>36qv`)J)i@y zfytu1mErGj@dE4)^&% z*ZJAobouu2zLfkC-gQ;w^ZW@ET5OB?1%v%x#OD73V*dm0`~~^U$jHIM@Fo8u7`}j^ zzY3ZJ+W*7*g3A66j}?Gh&Cb9=z{bizz{<-S3g-fnEvB4GaCUb zD=Psj6FWc;kN`3!7J$$6OweDt|HO*}5Sy$G-yfj~*acU-=jRKY{vB z{x9#VGhec=^zT4$00#Mg2krk}6kmYoUl+yyMPUDeRTnmPG;}bxbF%#c3;RxS#(xmRO&tlCq5qKx{s+aJ2H-FaBMSoo2Rk5qEc9QXaS?VP`0&1C>^<_94W4eGfVMVB zDEJ;ye*d<%HX)Fn4W8zZx4xDmyx|tz1y2!Frt+rB%{EVG1dbYi#>|}9NMP~t!PVHP zu&h{Y0_yVqepo#tqg+!XqhNA!RR+g;uy^ZVa#he3u9OuuN4|6dD+CZue`_Lsu`6zM zY|CE>@ua`Pz`Oe=C;EFPhN1LKjP_qHg|R(tenCyIj6)GfA;i?yKyY-&!>ld0uB4}? zaQa6-U#bEX5~BVJ3l9%?s5$@=_z}~QN;r*00OQ0AuI?wt45k5+U=2ILA7$ff1)Q_b z;_Os^V4`PdZ=VaP!7;tIoPMP+1EMvKBLgf+02$N4Gz@k1mw_MN4E!b9^6qLM2vvzG z62vYxpKRILk8m0c|>$O>q8F=zs*G0;sT!Re=T((@FUM)y`Ss9v7w zi)mYzDxZy!$@`K)PHt{wBF*&b#P}+ho|VZrkm2x=X|7hzS&(0gqS45HN${-O_xz?g zsif0D+&grK{J&Cih=8CTu52H1V9zJ4aB=_Qj#J}n8@a7RcunLjiuSUqs1R6+LApJO z`4gEu5C~ljv@yILS<_TlYgO=kKn$8JiVjBWU~sH3mT07}aQKmkd}M*J_VBGp^G5-( zii(QD)2aXs!vi_6FdMtA>kLew-7OK!FH zkR_mtJ_7Y6aw8-A6`Pt%+zn)8U;_79&$SH8_<;by*VU2wgFhV!$6Fd`aHz|-vjY+` zB{s65aBc3c3-8HR^^*bm+e$MC_g^(NV5e~_X&_ozSs+Mk;_lO_gHQGk-Qv$$DxirE zvVo`i+=7N0xL>Dy>pjU2Y`#DNw_Csh&#sN~z#r@&-2|qfQHF@WZYa;3F;+0(dOlM= zd?7z|r9P@+eAf>?f1G@V#HPd-9_a2R_{uzO+28@yG`i>Oi;Lp7bAi%GSNnKm1co(%H!%4_Kn%_#CN%dMIK2g07CmBWZUU!R zZBOr+fDMF;OuW|x*+Xe+2E2#@d6oap0s&$=pFKroVQpr3m*O#Qbq18v!7~kq=f#PP zQ47r7oxSY^)bfG40R-V;i7j?T1hgzg_p2t7=WTC~5wL*br=rp=27pN?0}6l|p1mIF zhSig20Ow(<2Es7Is-k^vXFPY?w;L~YVCP!42>U(6Em;7^!330 z)XJIA+s0%fUr|mir{ZVB>|as1`pO!+W4STP^b!P5>WLJp^{63}hpwWc4G1IL3Ji>M<(HL5+*NeDiA=<|d>^Um*uOBzg?&*4ocz zMi>{_0q`k!0sKM$Kkp5|R|ZrXegZI7@D$XeJ^3=;11OpCexpqZUqpV9s{R#>Mli&u z7#jXe+4hN}_iWmey)tm0!e;UiEUPk@lvC`sZ}2Lm)l<25OLAoJ>G{g{2*Guo;G(5R z4x5Fz{H@Q_800KyhUp2zZ))3cl{-Lhl5C0~rSzBy%H*jX$gh;=2WW(zEE<3}U*`aF zVTX}L5_??Zq0Seer@{*0CZ01rr9gib-T{T7ufiU{_TUcIU!CJiiFS&LEG6;ui}wKF zweST*OWIoBX$_^|ogxpP=r)QeIMuQOuX3rYgJfpedr~VznIwr$ZSK`bW2X9blMbAv z%0(}n_)@{m4@0)4RN>9_x9a;9Caxwmg*xe4co+t9@E| z;T8UMx4fkgozhGf<9Nw`bXP9mOUo8hc-gu*Qpos-eh4}CeaRLpe5nIA@JJ}<<02>$ zn|P@MH}F9D<9p999er~zhTMNgq5pZ|pMsZo_GuQ7g2w{))Xrx3mXBoMG2h_pEGQkF z_E3QeuxETeO1bw$7f_hkRLPlwKs{2cIo*MsoW5(vJk zQ(_I~_B%}Un^-#VccXPm&%Y!aW?P6a`O9r`u9;yItG`z|I{TJV(H+GwxS)7&)t_*6F zj^bXFiA-MGiw@Y=Z)3kymeu>blT#`)P|4_G9{AdO>4a3a!|CH5zpoB)%vUX;!#Ru8 zt&or3mM5*FC7WX!@lF=^JJ;`#GgNQndRjw2s{MJVQ>~)+Y&uFPI6p`R$QhXUzBEc6 z*okMXdJyT+n^#6%N;R`j?RqvFT=q=+5n3v(TwRi{(y@J-4o|>H@%EH)j=^a~tyXuj zZ9b!#Gib?Z*W1{i4|!6O7Bk~AupWV}b>@H@3aMB2r-}VEIrQ!VUEsQ&BY%}==LPxp zKrXNr-fs0t4C4<~E}Lg4D}pX0OhO$gE3>Mqo)|GKp6cX=;jGIW&22I@(U|3=sfcD?CBrISh`^iJVEc{Q$7E5h0(S5#2Nkc-|; zfL{+pT(*4Y)}*P^`A*(4cm?9V%0XDv$w}fvPP0Z9Pn%ZVo-g1oF)SE4Hc>F1jg3p3 zK?M4v?=K`eG3_SvO;p5OQf^`p$z?+et`BNJ;gYFT3VM&QK}&|bdRMJxU&by3THuTn zeZ=pk383y1@prDj1#+@0%EZCzzor6yiWVz2xnORLYO{y7JsCCr{&QvoH8lFe(5_<3 zTN(1nT<|=R&LF6`t4YQD;f9Q6L-eRv*9DYOAKS4KZ#+iI5y<+=UU^-2`Y}?h12{(B z8JUA($*PR^u^IUfg9^I3Adji)0Gc??q|#=`jAE8(HpAmH+q0fbx@83oK!kRLl zUL_iY2np7E5w@%TB%-;3_0AyP?LQaP7jN$yFLsefH7C&8EcRm8<b7

xVkOJTgvPnYg0xq2c429J_%#fp>Cs&~YWE$&F9l6_ZDOXZf%iFfC{sPI&F_Mv);t zF2mZj2!DmFhzi@Q6J0-g&YVOqM7gLu*}Y4GYB36#L7kGLxUhNjviuz3KoZfvVlWy` z?}}uesvo{BS}j(7TJw=$F?i3x>~@sp#+sb4qpOUh?}MXiS@AQN%JeSaqP*p_^{)b~hUq+x>h`?iS(6r<;e7A3OMJNhX5-+=;5->c*Lyi~ z=1Lp7S-H#yvHXM4`B}Xduo%@=Vs$KfEe#*atiu_WDwAvHONyQqxZx1Hy+?tr!V{9m zvf;Sd0&0UN{iv*L6T+$FkQCvj|DUCny&oEGX=y~gzd~$&RZs}w|C~3!1d`;9O-??q zQBed={gj*XGLs=sZp_bcAqmpXqc6GoOJ%RYQC3<_16&1{a>cBvDc}q)eGv&A#D>GA z&@Oge0>!P$#u>g=I~}@3>^Og}&mcf&ugRd|vvWC>tRJ_1CYp&4J!&S%4rbhEbPLYv zCGu|G3~w*<;66w}&$4BF2$MJxq$OyK8@tnf$g)Dp!)1wEMnJ^T*(Ioj)W4!y(99BB zzHT8Kh_ZJh=-iP%pdHP+_D$cH!F)kA(!90?Z;8t1SeR(38b{o_+@(jUg3-~Am#%|H z482oK*L%gUtU~;j<29*#M-gS;t#LXC74X(7LKuc4!reqG(9I=hWPE2S=n7l!8|DT8K+!YboAj zcD!=}B?(i7>5PQau3UOd`FilT|9QcFxvqi!Fts8K=_=1@cyym4j3$q}RDh@l-bKyK z11BR{0_F@Do_)n4o!A~^D<5fyU%1i4!o?M!4A@?;hZ6$h+8Z{^>_hr;n&!6sZJcucbWMUlW!AOeAphvf)C zgqlOlxFy9XCwHi&g}~KC{TC{-LQX2&w#eLUb9sEoH$pfMuIO?iI-j#3t?F}{R5#hO z)sFDY(Fbq`u|Km9m`!m%^x-;L>(|8Cwr5lFj;uh=mlH!w7g+>&^+(-@^2UYI^Sv>= zW|&VV8uE)3^3#$aXk?vnY}+xf3Gnn81fhs?9OqUHJRDYE(lCa;eEs$&q zy{Ny_pUhza8(vaWr8u(^+Fd_k3{lyrbN64@7I)1iWySnmi1j*(aDfT-mh7{!3thJI z94>Y;lpPh?6|C-DO^)Kf?8f03b}dggN5rzp=%}6LE#058(JiE)yVvP!C_bADTV}M* zw1~U|hu~@4fj!70%=2bXdH9x$rK6Mti`ZG|U^;Z?6v}2hV{cQj>=3`75VVe9^Z zxSLM!TjgDb(=inGu!L$b-K@-ixEhhQ+~$K4Q!-FcoyG|G!Gh(p;1x$g1@$!c(bnL1 zr}I?9q65`wW7FlK$(@b-?{!B8@;I=OEIEq7`86z;Ob7{?Ra|32(+GNmT`tk}9*Wi2 z4yaiZWNgK_5!dY0z7mKG1vC{%7V;`FVv=C^5!;RunKR$%`=TKBMwQ9D^O5tU<3iee zA{sZojkyC?;1!|A4Y|Oew~8*F5WLq3ml6wx(@RDMez1@TMByJd=TpD0nrYjD<g%OBL3~7^Q z@_k-Jy%90r#q#g-o^_U?stDHJ%^fES-R}q;fbRatH(w7PF!3lVIKQo@3|zYla6)s8 z?{uBL7o}WCSN8*+T#t`$6kR@YQ~zDg{ktV+JT&e1zGtWfx&Qmpy#Bes76zETb}^}=RwUy)&#|V`mYGjStvV=IR{JE^bF#@xLMdL7_mPnx5S!1) zyzSaZ_5GSL)t_87&fw`-?cc|p@>g0lO58Y66N|Y8QR#l*{Q{sX=W`k|DXxc?6$?c1 zr@`L37{QJ?b^ZD2aDa^Rg zc1=x{L^O+p??h-NWG-mg9! zqiU1uc+2dWJU$n>;ur1bVkMY)FojV0^m#?L({=>`y@0J;?j?+3>GgD0b(;Qljq+{L zT68Nd)Yb(R;!Ce-SFl6hp_bp-7pOSUP>i`Ov)3FMtKW_?H-WdyE_AH_q%0MydZ`{lsmh7J%P^;ApDiw2<;bMBQ# z{fX|RNw713Q2_6tlS>PP-MS06Cn;( z^Okmq24W}mqO`OaOvWgsI09(C)~WoWdy)GFZHAuvA*?L`B_XM_pYBhFqJFTA_z2-) zE1mdqX8G)QoFTVApeg%HqfKbVD|}Nwp9mkDSYk2vpFdTa=FI1p)EO(#e`(kM{6b zU`4F+$x4$2no_^Qjn?iUFuuw(Z!$caj z7pY>@j}`e?Er^SY)zh;9h-aIz*V_yUeYu*m%Z?|HB+FS_JZAWOH)f??!{hmvgO?%o zwE|aj5z9?#2NE;4-;HApnv8-6hWaW_LN=0vAR1>;Z){R0yzbtmIuF0lpE6cq zkaPyhDJ?a`1P)#%tq@7@euJ?*J*S%MVneaakzag2u{Eawhv&;USEliyUo%XF0pafd z%a?$iGCDdwu? z@kxv()yLEj`)e@qex5fp?heqU7wV=mclJxCi`RCu|WVYqsi#J17e zI=n-E%`hA!S!a+;s>|#eBB!o{K$6o+k$!#1?8C;rS*ux-xJS$3m-56n&l%4zVN^L< zgyB3~e-E96pvQ_@5RRjHSJ8U&V6{!wAY_2|^JdiPVLZIwfy@EC(LxK1MkrVWOm z2c9GT0f{0xySZ<(U8=F*84dq9TlH4?v<5Q%TsvFY&IQ7EKP$U-f^?u=5&aj#uH=LD z=NaN{#b&u3Ask-02=1(vF&3NQ0d>CZ?wQh)3jO$Ie{0E0Dq)mlOM`&7NVo2Fe8zxS zvup@S_Sp+d^UD~2PSyxUs_&#_R>#t!BN_44ohSh^vAJ7R8b|JCjVeaMe z9XN%MIr=y1!vXWZDG1c8Y!`V+{0Z9@?Gk*=F8uCA66} zyWUlMS7{_hVbGovRDV`rW{JaGg09gLJ^H0G*M<$SIe2|06yqcJ{+eCRRY{^=|D8XB ze^H?nwoSeoP^La;NvT*I7^TYI_M8jHnx0Vdc+xBxPZX4V`RA`E?Tv)ctZxWv4_yb! z79XAKYLxg7z#m((L=bgK3Df9A>8tXuWq07X6H95N4TPni@f2<9>uxMY*<0@h9+Ozj zg&wMl88+(JQ|b(BYc2lRWu&SQp?_a|vwq52=Y63#PYv1*!9Bjgk2=-4WY9ulrSdOt ztz2lXfXnq+KTVYAX{~BZCW`)uuxziYyw<2CNk3@x9;;;vpEP8Q7QN0>t@byauZ1ZL z4)CQoR4S@sCTU1yi#)4!Bp47!>1}Id)OWJQ|2h?B7lJEMGRbs})HT zcFUiEbZKkRMf5Ye9F~`iY?IkMZIc*cMY}}tmnN~F6IF4O%xarf?=9rFoi7=-lfEKR zyXR}+{G(@UuM(CB>j}#T391foOEG(+d^W0*4J>)1k=9EbnXfBTC=W(xBMyoM#$*$-7Z7Vc$6c|KQ#G=rQxOhJ2B20)2~ zY=luumz!Bdg(_QH_=QrPtj@4S>v=FTFE%UdYD*97qjNsthj29#k~z^IK8bLByVkv= z+~~y8l9W%cuuSAF`%5@09ozI}8yPkr=C8}>zm1V?CD)iP6C~=T)G$cFihWy1r7HWY z3AE#;Kn0%Y=zaX{r{uo)L=P6#(asSTz$*wwUPw6sTd5g{+^4CG^!n zZD@DTkHrlBti@&Kn$4ai-M-bD4YA4_5;&z-l0|bh?7KG|f_}@+Yw^pNWw3b@avM{P zm#HQiZMW`wi+rYQFro zxwpqZW^h3gr#5|vNsk}EIZd~1&w$U$-LU@(r+ITC-q8|vl#j*T{ZWXOH7K^&Aj7^h zcQ3KMvNNm{uu8~+1wD*n!j|qqY#^AAc3i?)7|TH5u|=S%w~fk-;lz<3B|n)Y`?dT3vlKcbS8~Cs%1eHM;(mt z;f(mZRHCwg63#R1p`{y|+kn~#lY-d=U~Y6bsF2B7w2?-FZD0yFft-L~tP|Ec+fEp~ zv>>DuN+HzkTFIa?a9BbOk5(Is=aQ``Cl;N@;>6KSpwqnoF$r&=f>|oe8GTVtCZ)^z5i^E%!Jq~FX8FRWsH&P@zb z88RLe4pmb)A!T!V??c#x<$=*hda;0YlNt1DTjqwnW~-`>M0xM9i6gArWJO^5)&iqy z>uXMz2X5_J+P&^gAb$%cXRM^nTQSa{f8$&W_b1qgKYZcInOh2Q1+RHW@9Ku5|FvBS z2MXton8%!<$^7xt%7wcv_#klP{0C>dJ$!D^Ty z*J7!XJpQD4iygwE{p|BLLX=IZ>f283T249~$z8m1I!wlXs*;$EI3Ix>v7gl6cHUbm ztOA$tVVD+3Ml-3%5IF&k>6{L^0e z7Wn&!tZpo%-KZ?n)1oUG|EPUm8l6$fmYKb|IW7ytM@tq+P_Oa)`6JZgxF#q)n?V0J zXY2QdA#yf2_%{j?iHr!bJ03HO8a^bYtw&`pros&_d1ftmee6dLs>6EZ+S;yTaqp0` z9;%A`8ru=37^GBO&WngC?r_3ziL2^aho?>sX0fxYeqAKYcT-71i%m8W>Ab2<&7`K3 zO}0TN4F;o1y4ORu3R(I`G&+BwT^(5}-$g+*m+~irZgot>s{V8vV3qxMu5kr?Y{w5M zQi6a;Y5gj;3v`MW&jWV9egs6%6~2;mud+y9PE$+?#urYz}trwZQDHl^u<~ zi1!?x4xi-5msh0qpG;Z=M`2qWf!q^Mb-R^w&BWppMb+&23D`tn|9Pz_H*O%WlVCe> zT{FbG7 zEaX5A0fn|H7A`YH6AHuxSlg%3V$tq6M%^+myA`4Cwlkg?9bHrYH?A>;`9nxlj=40! zGRFa%k%7Tkc;>emV_MduF7lOkm8Qt|Ss`T}Cm*UgoT9TRdcxmufoqAwjjrOZ!bR}5 zxReSBCw%hw`)iY3*>W0>J`P6f`8N8bYqf5L6uK}R-Xcc)ERcP_)y4_C7L0bK=zqEL zo>Zbm9Sv(p2RBjX~4VEJBl?fS8UdcQ}I@Ay% z1vR{Vk3LGLJh0qa{GBYy&t3tWuQ8;$+W8jO7YaM-in-yT3cl-yJZeXKL*nTzjZ-P? z%Sq~Z`0BIzQOGoTT*m(aNkF#0u|DUis{$S}&J)!*HZ6m@JS6f`+;ybWu4|NWte7aq z+)*|ybL-jzt5mf{{UdaheoxM#WL~TUxvbvonBs!OlPF{B*k=7l`@G1`Y*cGsduY z&Acs*Ydq6g!J&7>9`fafBG90bVA&LFYLPD^>~-v_owhFd|LX;V!usAGL55m+Ai-1v#gH7z>%2fz;L zrOj;4o4#oegj@$Do;M=dTvE7xg!Yw04F~+uwlA0&_fYkhKF9RBf5Z-d;UKEgbPzpM zrIkp)Ebst>V0Ex%aoy&{3C6s zarooZtR(aT4|u(37G6xzC$WXtWR?lSO1IQSaobw9K2pdc9AbkodK zc5lQ+Ptf^;)>bs|4ArR4UJx6Ftdkjhfr`{i^LXuC7J#YT=Nz?i{5e`?+=0yU*CP0r z0}`uZ4pc_Ay9tjA!YUrrhIxpmaz)*D0W_wcO$3y8-?j+G2K13Qw=T|%Pq0Eg30wJ^ zahN{e9h*%HhMd!^s|o37^0i=(k;(C}iNe`lG0Y_A#+Ta4f7YqO^JCJqN8UlG?E|6X zxD|5ljE!ExNG-U=o6|PhxJzQ8^BxK(a&o*!1YBcjntQ z_oIN#&FEY8B#1k^^;ktD)h^_-qQF1PKF`xyhcvriq5v#^NjeZvoD7wuTzR#5(B@3h zl0`vX4Lfi&Y+pQ#VM~H#e>z06lN&{`5Rh#WY=k*G&8ro{RESLPC8rC5l?V_nLv4H? zbue3`o^FvVgoD>eG=7xpbnGtPj z&Xm7%`yCipyS@)3%_>+jk&czaZqpWFDR`-cUoM1_9Dj^t2FRt^j-Vj`@!+K7K4 z8b7++P!kc4OHJ(EnKWUk%o&GsM?G7tL?VsXiH`NLyK@F%NfF?CvJyO17;uyg0Wn!`KT*e)9IJQ zn&8p0#TCjCT0K6)q1G_v*OI@Pl+y_c-JY2gc$F(FFK<>~E)cWYcPyUY@{UEj8LKiy z!Pl|0U^1sTou>%zq|u_s_s5C0<+3u~EkLV6m;QdBIQ7a`a9|05Y8`OQ@cSjYhn$n8 z&{FcxOQ_U3i{HB}5Aq%5J)hdEdVboDkS;ygpH=j83q6-EpO_L|e#tXETKR5Gk9dX)!!e16$M8 zuIY{VU~r6w?R&Q{8&cZt%pY#;Ff@gRzea1GeK;o@V$J9MkZ^teLrb)Up@iNv59j;Q zJDB*WbM|uF8o5<{{e@pAhz^IkmbZ+Kb0M;u{VmPVbG9Tn9^uH~pSPaGFC|Rwa537N zOuX~VO2mp`m5h%N^2tm;a}U6}>6tEicB1fa7z+oe$1uGIvFxT|UQC1(u=UmLE`!k*GNkl4uvzr)0ztCxhBnmmQ;+NGEEV06E@55=Bl+44`rdDD*G9t~JH{g?BPkBmQ;0}rTR~e$cc&7yRl5qk!D>`1KerEgr|(ZoZHxrb`7fqtL~_-n zntRwY^+X!?-*8yq`Etzhfg8h_4EgUIvgjjJ=W}bg%hahLv){juzsg3mr{C7aV0iI%Gp-xSRPE!;XkpZg)a*Z;IFD6vLepOa%=QmqT` zdBArE(-fj?wK6qHG}+TTW`fOpR%d~qoffz8i|Psk8ASda^;4b3mviUoDw(~TkB0YZ z<~wk&%tmJP&2i{5s1Z>Onz8#8uZ(lY;^fJ4ss*p4OWnR+vCBf7lIRdpG#ps*_EWWq zA5bwsHh$Od;5p@@4awgwn(sA=1j-4y7bx)=`^E|3XI3kqvTo_Sm{4gVNS1cA55CJ? ztR=@7jHb>|Zs`%1{Hp%dX{+UJqs4m3g^gMD_Y+m6O;m2>oU}Cj6vb0uHW|FZ7__;b6r8idlq0pD;dz4 z`_j0S&Xv(_I|`lU#$wCr#jKl~PkhkSW_g;M zC7Pb=-lDO$s3mdSnA{%iRkk{B6z1}!Gwy4Fuwe~dOyd??DMMpq{8D(dypIz0L4WnP z!7EA32-Gmo4HyME;F>Lu?fPYphNP`muz)@G>kOrBs%xQr2MA%ogo(XSm`Al&8V7hQ>KPH=Y<&1OiZ?x zDS>YlqWsh;Onay1Zr{J$!GhedmhNT#Ivz7%xmTgzi9_Ng`x+hTAzgEuJsB&|qTl;s zFu{WU<9S7l_=|hh?CU*PgpOi#>-Y{9!5CNhL0itR(yyz&#a!7F=_h@NEN?o)mt2S= z-mSRE&3#Y8LHT+PGG;oWTN82d*D2E3MiAE4ixlEla!}1izq88l2k&zHZ7+-8vCe23 zucm5tsNp7=CM8T) z#!u)^DdpC{@lO9hzi$+em8Q9fAcJlJOL9bk<<&eecBM<6@A~&DO_IJ|@(%Q=nzMD> zwg@HHX)2njj-7b&!`i@}t=R7CHmz5yR9H16^oKhwg+!<8m(q!?|AV``Wo^Eayjy=(`T|e0T z?i>_6ERNeOnT>ipV+XZHyXvi^gjA`v{C;f%aJ~b8#7K^&e*eOAW}U!w>}dSdw9^{b zJqgy`e#y9$e1Em@w?GLMQS7mW&eR>TVwkM-G(%j(VjpSt-V)A%YH-OQrU5!bUkVvf zxAvP?HV6go6DyFbDhITPB+Z;^Kecw44^dweU$=V6^*1BjzC4Yaqm!33MLW08oxC9Y zaG2dZ1jKLQhM)!H`iE!kymPN>bnC63G~9wG?CX zQVqrYH_E5L_l;e@FqO%~ixCwg$`0Mc$px40YJbd6M~SVUr^Q^Qw2$AUB5Q;as$!z< zR-N~Pq`qF;nxx*d#F78j279x?BZ^N{>k0kqO@X@WV%mMEF8%y2?T@*gY%#ivM(4D~o7 z9ozZ5eGv5m`mY_7~B#fbRY6>??0HKW@tzOeEE z{W$%z&xahJgI5XsuhO@$qA^OA1EK_K_j1`SessknIo&9P{O;E43LMpeVBqnA8RZH3 zt;X9Zrv9D6CpF)@K~Gjz@**$LV<1G`&uAPAAKrZDyPA3fn(NO>Vq!w*(b1en`7`O8 zh=ui|-*U}&C$|yRV*z3b1lr5d0WNSp`OKF$3eZ{l`lHpVQ&6{wGfP+el+AkDp{Xcl z$jI=&3T1*0RTRfG&X2K(-@ZDA^UCS0qdbw{C!5m`&8Eh5b+vkk9J+}QlOA|GZD)+s z%2N&_op-i+W8r8lwm=kV9NkUAolhA0dRgzI92F5xia3@(*Y`!*MB*bEx=R58ZQ2)} z!;Qqp4=qdYTznu;6oEuy=`a#s87}UC`4y}p9V9V@w`7j_awYLvidLRcCpv9dEUeTw z#!21^#SO+nCq=XF0H=J2xeW+Q+(v5ax#n!I^n}$xSTBW;fY2AFWC{hV$6A?OsgW9@ z*^Vm28Vf_QeMd(c z=g~wmvHX1YNB4O&78pr^cr@h60waXzIQuSsYKV&$b-I|a3MU=1z>u2z2aqtVpJ764m&^B_p@>yIj6 zMS3w@VG%@@5%*O0%|lew$l*rZmL<3N#YlAJaS3O&0fHYfxo<48-T~6iY}hPbX42J% zx>hEf9>|GU*7%(1emK;qe}`6M9CV_rcVxZa>!YPeyN!mqdIn4&U9U@bu3DhLZb!hA zHbSo0-w}8h+&4!X&7C)$3Gv|er64(~L35LRIDb0v2VHz!Y}9#oi)`w(X4F~>iI|!% z)C(E9f!h;%2fb!V<=@Q%_<7auA#aO$n` zlk~So2@Pc}aGHsBl-NZwp{%O)-UN}Hsm6PxB5{a${0ErV;=bOZh6KR((Dq?+YRMYjaSp#M*k)ws#Fku= zZKsMg1Bao~K&&WNf@-zjKFZ2z_me?Ly7omIy(ek^vO525$2(bbnBe0L;Hs8sSma8P z%ad{>(*So=kqdrYWIN2c)V#`atLr#i{<4lBGFkhM2I5A)Jgn*@u1gtb`8}Z_3PIJD zZ>xxWq#ZNKmVHjm{c;qv^Gs1(uWU17d6KY-CqC&*i5VNtHB=fOyv>`5qTTwi+}(PR zE3Bm1xThY!=X}?qD<5Yy3l54l>WzGaONo~5X*(f!Rt#JyW z`vjN9B1oHWcwzZ36tIVpKY4I?C>-_Wj`KU4g;DRNg>b-_@l|aJ=HrWu&IgbfrjFBG z`CqAZEY7BtrvTO88%@yppYg^_C|Hm#<5i2RGJc~5DpISisCD2`RW&HW9CtDr5)@|W zuDlUaK@k7Ve4m;L-=zoAT1NYP8^C$t$+)Qe^vEwP52Zg7Y-Ba_Oqwf}@YZfGe7EH2T!eb=C zH_c9u=A6BR(JuY#(;sXnvXS?x1ss1 z>vaKqI9mq^v9R2Fp=N0((8Zoj9^Y{QQRY{=Z?p_?e1qugthc6c%f2bNl@tK6lOpLG%|t=R|dn#jF;1h z3?f|rdzVt}ef)6?GK+VYa?%z?c;j!5xO_3+t>`bG`irciecI!&yjeK+jWo`kE@Va1>8wjV!n?+ah6H9qt=+DNC6S7 z5fU)o+!h6Wu^UxTcMpHt4|&j-3!kt^MgWP*AP>o|n@rqMX2MxO2fsM1C@Dc~9%YQ; z%V@fmv2BIVs^5};5A(4;RP4P~%PV&~y!OJDVj{Rh;S@A|zSs{@P8}vqTcIZ~-^)@- zjEqszsOhDmJbwnX;TdWa9kb-*xieogY#y3I3tcgoLrkrpo=BC7ZoaMp1gl0jNJ$gOee)+zncDfMuUi_@#d3@)b}w_@5Ibdk7H|3 zT0-mgm=vv#tZXUwx;d@|UIBie5)?O>$W@I`tX*A7VZXSeS^Dm9VD8fj_Uih7)O(pP z{oAr?(vyWfU$XW3rF#7;03C_Cm6CNeBx&yI{cb@noxGL!8?~&p^t%WCy4PHMSTe15 zm#3R5cH&J3u2pR|@`81>VuKlN3>6Tt_F|6rH5*1e;(fkvL*wi`7|@}ccBRg_6Sw@dd66g~VL_g`$pEO(M=3?2FWE*EN}vIPFNW-6soBUU-Hx;_7H=5!#lGSzZv!NM{a=j>o=6$i9+V&B3LD-NxA?#tjXu_^n{a{1z~k&_FF1nCNN7>FZK-FUbU)SuJ3cGh<=BOgbIO!Z^(0Cu&^)P zf5lrw`C1egqZ2Xx;~RQA!;=|1n(6Vp%iE8P;-q*qC`~oGG!XhGeu!rMgajv!;$JOs zB8yX0CAQ3)o3~&$L$gfCjDULgX?oD(MhtKOUca&xERxEyfwwqTZCHmYXcg!jugqOg zvg=4+)08_h32p}<&(VCTKon_4F;GQ*;Ow|t$e5w;odui@I!c-(Op0B7Rm?=O66 z_DbD&iM33*YD*~CuF@P@R0um8>NelWRvW$2fh?6W54t)UCP{TffuHp6%I7JWb1e&!rl z(N6{5Zrt=%FIOcS!nWpj(}Bpl6hl==E~?l8X(TFv^_y)?!ngUT@DR#ndh4tpd>z&o zXSe{?)Paxahn0>c5c|!iZhLk`4PxhES zv9O}sD1cj+kBcT-Rq+MENHOqWp)|_uS8Q~YA4SGWObjVzW)v6E&myni?fa`fLd9_K zElh*)$Vpk~$P@*_3_e-#@>|5l!V_YOE>qu2l8_~f2ewP&&b2dis^)zzWj6j_06;Ro z%~d}X33Syx35Pa8MdP#66!Y$c#M?o|1j>baW?(e#W6R*ODIQP>q3z(^%n2JdO$qz9 zX&ftDuyhvs{B`%BbP6EbIE8%UAjx>2P2$Fb)xSfa2n0KsF2oq#T=sVm-SRySLCJ^J zsUs$TOqeZhqvGdPG5_tHG!+Z!ebeM8wA8ZI(*>BYRF59X(qX znSAX0R8obBm{GJX%YAx=*EUCCbo@Yli&vhRC+%{i2+xmFX!xC;-GV$^aBR4Y#y!n9 za+II{dBIZi*9$< zXM8vDdq^fC00px16^+xq1&3klAs|bn8-=?+l$3#K5qoZRlqQ_UvqInbcy@_>5OY&w zW!&&jr^`uY!1BgR#RO1-gGbWCsN|Ti$9Pwr6Vj0=S-ZQ6Zw}qAR)22cKloAfXh#05 zLc$F?5XNtQ8*T4aZ{rOEtqIhe9-qe7;0ThRDME3~(G6+Hyk~TI?&tME-=a$%4uc9u zTo(f?DeGW%0AhD6+H_q(-t@+ucwo&P#$22pC5bhl^*rU*KBx;r)u}|Q61RJ_VynC< z8wY*AzI=S}dZ|Zk9vxA=&I=~M{_&w2hJDI9kiOv5)1i->ePo!R@WWLzfF{B1cw&3I zKP`5SdW#%vQrg91kBt=$HJ>-c@g8=$KK_t*}%kR1E1cCn2mWrqRCsJ0RL6MB) zoj_~Op^y@~)HzgSu1AE?uaF`>t36&=vk|~_%wUlEBzgb=cfBzt`rb%YSISJrFb=}H z!$}1w2!6$pTZNOJ`}U-#n>R9o9_BOD(|9+L*}&B%zDtM(%|3v-#^SbJaVyOgmNe{6 zQzod7v2Nk(S%?E=3pJvHm+k4B1^(x6OvO-zAaxaB_s)eDFle?4DVCA||G;6~1pwxQ zL88{5M1yIOd@dN^zJH0--BLj2r>JDv>}c4-zKWxF>wnC}>zJ6LM4)Cx>GmD+Va^7` zH1JHgF02sN`S*`R<|y~Oc6qrrJh0rn|?~SX~i5qHB#7yXgm;3D_aDYUu-Y)I-zw^DW`X=hVEbt3lY zY(o#DvjRZ2_F`$AvV^r$@S$>zg!EZ4v}bAC*!r3b{4LA&pSC3EJQ@aMJw@aTXjK^R zE(^o&M?rtiLF0C;niQtgSOP+MV|0`9#S28Qoib7!MRkMkI z4xBg8bSWbhY{%4}hN#Rl$eC^lKEttHW`ZzDh0eOWy?2pxi?5x-%5#nTu8bg7J&-=0 zrD|5Q?_w1WgpO)7*b427e@F#3bX4+fO-~b?3C=5tgf~lt?ew^caB*Qu%=PTXkj<|Y zp@!JX%r~^0@t$7YHS~a~dHEJbx!Ys^4;59%%x^Zsvr$27nnBMyNm(3m@=AkPbLo9LfT-iG=LC~+gE`h1$i<11~yabFMH zY1B1c_n|v$NG}hFBJ}5~m?4bn;^%2KP{cb~F*@{~Ns_fngk}hK_ksqXF$SGt4%i>F zl#9eHeq$XB4Q71KM;EsT3t1!Zz8EH%+9HbNjPAZzU;XWlgf`Sg_68WG>`+cmS6x`b2exA2XzU94=`$2|!hh%JsQp3q9Mxw^ zq5XA$c4z-)R5qU0{mU?gEx>4hEbfaiZuR0Ni-&y%@JxPbl(ErCauPltzahtgrbFq= zgbezB(vW{8!C9OxfN7gTji{Wz02}3 z;F!y(>F)Hm1QBsttC+fOlo%I{mSpOX)a|-gsnh|&;5P}Q} zFlOifrz?bviFg(7sGm4ZrKP#4sF=!JO--(&CHV8+DTp;B#!4Vmu%KG62j}mp09YLh z_z<%n7Ga<3sJLjtYh%N&3H+Bc;?*QQ73441qnvE$9<&B^kWQZPhiG@RPEgl1PD^U3 zz2fa#AFy+6EIPUc%wD94qRLqfQNIh|2H^krB4QoT|4iL8F;YUqL%ESfXV_qH`Gl`n znkwcX&&C*3FMH;ae0hpGl#Bhpf0>65HV}s*&i;h4!*ZSkD+1|pOs!9A%Sbw1hV(JS zf$2ddPn9)k7*2|mHTNw1_yJZV@KN&#ZqO&&YTquT!WjRgt;r4;;6wKRXBbgH(1W;+Ktq5p0v zJ{9r(AsD-_3_5(gjX`Nu^7BEaP`ddYPud>zW#QUh^M2$cVUM9ZY}I~mfvI93IJjIA ztvA=DuL$M01=kD{utHj$+CcvU_O}~MXJfIsbm!id*?)mqlKpK`#g2DI_we-JkVn;< z$y|8IqLXN5D3a%7?se&3=Qb+AzANX(sh2(EMkX>q@#X(!7Cr~5%QTonNC)7ALxr-A z8D}aXwXTo2gtL8YwHDjF;K6M?r$fju{t!P;G-Xqdkx@%qHz?^19J)nvHVTY;msp`C zofE1RvV8o{cO@7*Jz+OPxGik%+a1DEAxgi>0r~K-YdSAZWOF< zlJSRr1ZH6ajPl7l?=q{N>0&8}MQ1w->!rF_JjbEVw`q|b+LO->eLKDdu|8f318Xpz z3oJFS|ACe*X$mpxfyMW(0147Z4?l|oS*nZ%+`Jr}FBrL9G6^a>?uj!tCdCcnRiW0q zH!W{MsEN5uz^-$KGwo1o1}O^c1HbsB2sSKjxd^&>X@&G(qJJX09uOd^Hn$dRRx|(9 zC>cq*TV%L&y$k)NFngthYrSg>Z!OR*f2gKQ?`N z;Ba~NP>J4)=zS=N!mSs31{k6)@WYSb_#MEOow2hhlXq}MNFMEVkztJU$OQfi?toR6 z!GbO=Q=?8P++VD>QAdPg@MB2phYcF{66*ayDoM;dQJNzk-m=C*Mz6|Y#Kb)j;fEgr zwqxsdGi3R+BlKn?P+|b@eAd=qj;L#qZbD7wQaAe|$ojo5`jnBgABeIZf zdFRPw;SH94ou#HFzCAj=_jO~fI*>fRp)Ky+Jr|4=enY?Cb-(#*rRo5?C;R>bNsUm5 z0m!7&vlx50M32Jxy_Ku?hHlxmEh6}q@n1{Z3taO5d4~YOq>D`g!|d^Xn+pO-NrjUb zB93QiXD~2RAPtXxFHL$e*ZW6M6L!%fPFc4iW%I(~WC(DoPW+AIk26Gc%>j3IQFCgM z5M5;*7kKcm!BD5(enzzurKDe{pCD(`g8&*7|H4`q%-IB66vYIkp2hG+PS{2 zcEa+e^>>LFK}y{xPQ!8u^C17)F$%$G(RRs7+4b$faynu9AVd+{lb##*T-Ws!IEz#k zC|W;!U*fgQbSsuDeGQMU4O_TnOcoBgpc6_2dRo?t!wHor@frq5Mn)yg#w0+?Ej52~ z-(m;CeN}SpCk!`E@`(rL9glr-4jGKPX8vXBo5?=P1<%KW2Ka|Y-HJXG?v6ndiN5Xm zw23lL4t&>{3B?Z!z*^M-;_aV^8k3%aN^skvFMS1`J+iQM)RM!RK5${d(|>cv0@{Owi z{$&mWUY;j67jM0r3;B-0Q=ntC1$p%LiYpZLs$xUcqWm>%8!c1(Z-jo?zfir7Pa7_n$sxzC{bQKmL z{-uwb*DrV;zO6Z@;j~%`z*-Lj8CnKouf{5Eqna9cEqMW!DW!^#<7@%U2eC0Z;v-%R zFIfg=e)U^FfToFyd42HomMKw%;nv>CqFxpI!#UU`ubwtp+I6UlB7vqsd3$^bs>bgx z^qX)-{t}!puxW|hwf~AR{icszY>zKK-fbMk4b_{ERqzJaHlktfFdF?n)7ckgdQhFe zEaWka-jV^+J@(NtgADA?zxuNJKG&>q(%SMLdEfy(k}l1Jkh#f45wrGRP6ms*9TbNl zAl7!NV)Q*NNVa*5q=AZ;uc;o5R@UAETn1xi!}MPX89f(;G z1etd+j1|RK2V#KAoPB?vSe&RcI+11Sgd8Z0(@EXQ!A$5*MQ{u&5N2bC!)vtQrm}~{ zMn*V%T&eO|PrcWHq7e>#kBH&6Cv$L%Ab<~H|3#GXQSzh%ifm2DfPM8mp`T(!l9(Li zi=wh8BrSi_9#gdKD1+N*_=Xz85>R>ap_;KrMM8x>-v!?+i-rRZqiW{VrlGuMYddXx z48sw()rg~cp4awP7$y*w}i;rrF>vfQ1EJ8GpXW3sNe%=&W~M$j+3 zefdE+L>qlqL=!W655%!Y{3=k)n#TFM%b%^rWd}lRIr!G$s-%uQ{_|}DBYT2&ay=;% zeP@vebmyuIeok%*OYJzv&e%Z8a+j+V&2?-{qjJbEAQha01UY;|V@(GpE0W(w{q@g8 z-`)W+fMj7McBe6m?aQpRb_utO8ACCccZawDG}X^Q$i%&%wRqS>S%+;E?#mB1OFcJF z&dYcrB7_O`=xV6vn?MEXm5VMs;Hyu%zdU)7`ztRcMY!v;O1@TX>~JlTQEq7X=kJe^ z6<1zSlEf~cnlyr$Sz63<`_D6d-q#dGU)*(U@`v#IA+u2?2^w81%&xUozTlE>Hf!Z* ze4Lq1b;L-a9cixkq&&2aw>!Dmuk=zZXgb$OU=p`%Zs+pH043pD8H!Y&Fw(iD0ZDLl z#Wkk_8G)4|($50oAh0dU=~KCq`cZwOUJ?pk<_>hr67*XNV3`FT8U(ZByzS*CUCRQ~ z0>j|BlB7?3l}HUSW6p6LsV9mA=`MLvfa#a)l-p#{FFb#2OT_O9NW{~0A;}%sACALJ zJ4`@#9gCXY74I>hiQSjd%-k%y@1^{;^7dYLbXWn^aVaFU*wi4#w@!Q_<4{883{Vk= zAsywrYT7FB7{I#ga)m}weG$eqm^R@rbT-$QqbdB+e9@nrKp{5jOb}y} zCPWQW8C%J1?#)uL0=!pg8EZUh_LSz(*CZWo_S2pH(7CeqddlT`iH3>J38!Ca%up#t}Osq zQG^&AUtj%RP@m-vDFFESwgOPM5djMF&6{G@NyQH;uvnuo?U8JC0quwsOC{YmO(X{w5yj~`H(D_L7s(Vi!IN}#)SiIByh6|gR@=sd}}BKK-B)m9DyVQ^+a>^XE&o!${0M!N;~2W&VxR!XgXv{-o> zUXVC6?DO%R%pfe{2#RC&J?8(j%)*?J+Vj{F zoHB`EL>`HYl0d7i4W7w<8_Ip=ULnb^p*6OZU?N;Ld|~rW%z7^3Glu21W2|1B#Q^sD zKgFd#)QOr851<(uRzN(w(%Q!@kR|kk&GrJ)3DZR3J~-V{iXz0nL`Km;aCh>?E(5oH)oat+nrtG(L*-(uczHu{EULP@_c?LFIb(R(6#Wacz#- zhY?TEJXoztKd)tammy<{hxO?l#8C6v=EtO|&wSjy#2+TxG}NC>Da$8$@^9{wohCGl zUoSQd-?9vu^Sgw8P6Q6f2qKCeMUTRnB639Q^r-D@RubWj&RmRb!M%kxBd`vShMZ1+ z^Jn(7&M{bayZ60 zFF6>J3ng=EkAwq|AX2SyU;?4u!3eL0a1a;8bnkCL`)c&gEN_6WC(~O(_Pa$2i5_d4 zKG0Q6iyDG|jlJRz(M5%R zxOFcoCDP*&z0}gLfaJ#~kUcGrKe0I`#+D^fqQgG4I|z5*7_xyJq6YD*!;yNU+1+9h2(70)pv*u9L_M zV_Xf5khViIiRnvZ0$Yzi$o4#%K{kLRj~JPv`{`yH#mnZsq%i4u&1y*2*O~y>-%i&2 zhHs3q=hu)n8eGEI$cPGKk9Ogex4s5WM^fw_({&Liwvz;UoE!DMRcg?9ib1A6rfRY} zUk4C1<0Ji=z*{W1Q|((%?QMJbz2(=;KY}->XPFY^ zqc%Z1RVT(M0&Y+5%dlJ?ZF)eks-wG1dbZD5MEy!(W+MptK3dLI8c6dL*$)$Eg&|K{ z>O@3>)P)XQGr2TQtjhz@=aWl0`7s}KuV`Dslc=NbHE)ySF;+gMhZ?{mh{yA$@UTqw zo}0UfR*;^fY|(^zV-r9vr;Z?X(aV(|Axc1Kegino2{D@>KAC_jV4Z)cQQ<6;r%pZZ zGP7NvenQS=gJ2w4UNByd{$qvw{U87PDG!HEp#*Y_lN3SloxNcfUvox`2(dK%MoV<+ zn&|cMQ~!≺+!vyvDjU+WYzJXrW{}m5$$A4#$VQgtzYlhn5a~Zno~A%2d@D`Fmpn zMg4=i13Xx_RqM(YFc7LUe#OWCRJU~+s|1Iq*Haqo| zM;J?Mudy#XtNnGQm?Ft+2fee?tW0-V0`iFnwkBel;>^E-_bN-!bkoO+pitnl4?(sR z#6PB*=0DD_76525MJS5u1p+D~iFXii<0As;)%+t1)1%SiK9AU7#ZuDe(ptS5m<$xI ze2h`LnFtzAnGuY6O`UG{;f{ZAf58ki96(^)S@FK+6sT&PC(Z|6_cm8!P3~_xG%RM* z@nTdp9%a@ao^!-fnxCz@zI~>??==8}m>;$i_#%!T)j$=~eA#AmP8`i# zAs2n-+U}bp2!|Xv1KYj^-u2xY0&V_#&Zjv-(*{!4P-1g! zV;{w7_-hwhXP$v{-ub6E;@ShCkKsb-AW2{R5ZVicnV zqd=A$_Pyl2C$~!43G~#0F>Ff{DabM^oIJdeSmiCJg%=4Uu~P3*BUnvZH3(Y)+R~3y zHL%7n0W}DbGXaon-p#S4EAfQDz`xTCuKg={(zx72BgjbGhxP{4SmW6ycb5ZEg1KwP zpr{eM;?hSjr!wR`W`VI2F%o-Y7qCl-+@wdYnxjYM$J zhtgRP9rdX|a>wM9EcMhYm8Y|D2&tK45!lbPa%d1GD?u(vXaHSelhg3O=m9L}rMSKe z58how+`F3)Vv>F~qU5Gg$|@KNxTSK8;Xb_glTs!i<3fZbLj>%F%jC3fiuzh?6P2C= z2D1Kc8zb-wIbw#4fO4z2C<1hi0eBVji&66ZGQRk2SJ&eW()0G%@y8(K8>e(UzD=R9 z&praj6Y6Alm@1CK!Z+rE<@OYd8LiL%Y_=SGLTU=Qv+~hM&O!zA+3!BL65wf>G3=ty z?>Ax4QiY`vb5Hl>strEsB85`Ly~6w>@z}&a<)C)6SGogdqT)mf7}6SI$XB55j^z@@ z#=8)9DgtuLfTdOGUryx!1PtRySu2X{A&k*ATN_QU$Fv4*l={E>V3%KqlQyWkd~)HS zy?r=pKMRN!0gf$>&VMR1^aBMOpobghF?T9in4E`B?4k`Zy1EGU|EXx#r9gfQqGMwL z?-_ZyGB!+3GeR(2SXpUgx|O8)M$fS`b#c@=ojWJ@89?xZ8*$|fz9A(+9Q(cJ(VWCL zrBerGEE*QJkrgmm)_9WmY8>~@S?5y&ZgIIQiw!)p20-e#szIn_)%46(`mRBw zN^|ZHZR@|@Fg@9ikH^;#QR;ZmR&<@4&ZmCjU0&vR`n-L=^sSjc99S!FGew^KNbSB-p zDEgQk+eXK>ZFbPHI<{@ww$-t1b)0l;+va`qt+n>u=bkg}-Q)f-$E=z)Yt~cGn=w+O zFn@!T)%Z(QhE;3x-|xb3-WmVm%#-9YkV&)mlob%^+i5%?18W?0)V~TcZ>!;-h#_!X zD-J>A)dpA*%M3FE{f&{Y`_>JO52M=LYQ1dedunWF`e+M1Q(mW#ZHKHI%N%2JuYv}( zIuv^T*TbYJTUwgvMTZKu4%=$7&@W(Y1Rl1SZL1Bf(BbLQ_Swf zXs%k=@d5-1+gzQgD()9o*18JHq_q9lK#*k(3M{ zVEM@AK6fK8DE=wXXRaCogpsGcz|@0`n>G@t zBjcZRV+LD(?BKXzlRANKX#%#JfBe&wTJ^4+hMa!a%uj50(;%fn>i0S?6gY*F^(&kd zdwy`<*WqbzxUHj8dLun!pzfgcJ8wXb$y%^!`>9&0H{H*%u_hMUau<*iCObC3>;agd2NM>!p%3Gm*2`iJDm`D5RPq!sMo~ zZ^lssjXvbP=1s)F*{$vMtluWwgqWnmHo^ss<~)5$k2@<&z-H9M$Zck z7ow~T2chgb6`Lg4$RM?<8)^H|)Wg+*Ts}T;H!~P8H$KquvjZiltWLmsEu9-UgudKL(H~Lb| z&oM){`QW6WN%2VORy>}mF{rC)!A8{bvB-Cv`>2s0KMb*{H8WunK|P60Ad21wFmHzi z6HHghuF)uW(UeXErgL^2U$Wl75?l^$pu;&ScdDz)<*?788b}5{424#PKf|R*D+mVi zB6rgp{-9ed_GI!dh2# z(G_ZrJlD%)>^!tLw_hobVp^_44F&F96NhFNYD9QPu2oX`1&V<88GaiL*V7sm%Qtof zKi?2&3*Kl4D=D9#(BK#okeL77Is&gdOYR7668#>bZ!Hgse0i!#D$*=Wg;A+yM2osa zCTPoXRFE}>TUhSqso3Qd4#z=l4!8GyJoGEW>^{vdFh|{+lXXGw_X=Bm3F)azUczPe zn=SIkTwR)i*)7v@n$t`9_~SfI_DX|~9kd3;V|Q=1wPd?GigjOYI3yPlzH7$4u(dPA zML2N^{nTDu%rD?zZL)R=t$0O2vp~HAe<#OyL*T7DXCmK5J#m33;_L4yeGS?ZX-Mt` zwoJu;c@4V^^eL*R*MXZd(vhcdu@`ulGWQA;eNiU8!A-ItC_H4ZopiJ)fTIDkUILSj zih1DRj8oQ#+=xqkr&&8bL@~BHsf5k&H#u^V`%4A(D8DPbC0ZQ<8BK9xSuB_~+iV!1 zDee^-P&|8qlFkfXS*s+z_ktLKlw=r8O0dRcZlNB+68`32cX)lr`aPJ8B1cf&!66~B z(<9ZyhO6`qi1H&wX1j^^}|?vAI;|y7I?T z`wE)$TY>~w;B~jKiw}y#&@z#@bJF(Dp7Ilzc|#rS-w^E-)Z8H^jP4&vXQVw$jfIl<4lmh8R66tPZs^ zwq)pzakrm(NeVbATTW%Swc|cRboh!i;Y?ABzmz!iB>$%G21(d9bZuO}ipgW?0@bY! zPyf;HItf%<9US_Q0?!`8BCZbVm66(DWn|n~zzpOL&JOgxzOZ;ymRqa|&e3bSy?bvhUjEG)*9uYEIwq3ppq+KH`*$qar;1YMY96t-OB z_oxbtSBbo3ilrR3?X+dD=-f3cTWJ1v{+tC5WuFYqwTEV$T|x2t*RLTwgQ${V>0vjg zy`tZ%iaDXvqSWMlK3e0sOOEp*6KKMBo?6G+K>oRGh4|rq3B?KFNbA$6C%E~Ce}zuj zWoo-K3WM}T(r|>Pt0)=Q&z{YXOLt#SqrO>}&94AsfXfip?qx?pw$z14b6Zh7JBxIp zP(cfeEYSV^-Ixly7H3tW(DME@OabrE=2IrDow(+3C~B>C;cbIOVkv%B9Xnr&Yq*ea z45)2i4U5Oo1QmuuVJ5+R@mG} zKsV;r&5x3RZAB_NHA+X4(8>!61#-R51{(|Imf{TQ;y||B^9{QZaE+mQ6x_MlZ@{dU zGlf7Tt4wZ2{6j>-Ec`M#gfy*ZJdM$(;8&A^2$m7sZR-PM2EW0w#83CB`Z*G+)#%?6 zEwyZbU4*yNeQMD-mF-hpVhipV1TpeVmOdx7G9c6s8x<+(3*#&3ow(|G1l(vD#w~FI zF~DN1PCvCwTf!x;EjwT?y{0Nj1X%W(@pD{nPQNqwHbLxf~tiX$wEJxUN!^!xe1v`BZz z3F5Z0@bLr1=ie|ei-_&2nGixdemEbQCgGtVtPcm1xh;7AhmBImnff5hhSoI-1 ziHCvXg-is)$bODo_{Ch}=hW%g6fNYA{s;^2KN3cMVww>hjmrQvv#>zl4n2?Cm%K%9 zg3Bnys5zzAysKyJftNlJ^|^-d;q=13+o5{ zco;EoD+LX5Aixs5;Shcc*6xnUB@)YklU#G{bN8&o#Ib0!-AE5^J)e&uWUWcBa4YQ zmk!W02KQ{_Lu*T0JR%VrO2UIB96OH3oTpDk-X%HtTxmKMO-f)9f>pC9mA4LZdVl=)!A=jt9<6%x$-N;c%?`~U2w;ev%&xi-G zEsXVT-*DVj!#9eK(tT&sDE^j+galNIu%NuZq!=^9SQ|di9}^7P0Iw$5kyqqA4u{}s zZDFFhpyw^}d;Ko$QMJ$4E_0)NlN0^VB>MVL1(!IPM!)a1x19qVu9 z0((q^15=+nR{ym8hIGjf5_s2y$quiW+`+w?Uvjo|7#3l4a~+uInO%jEg5!u3g%`o? zijYeX`DkSeaOscpCrm{#7WWsoCc?V%Rw{_SG6u%=cs5XCxiQ>?Wka1nc({a3>QkhJ z>lDIXa=v<2-wPx7r;97;uJ`fPt?2L5kknBZ0XkIZaZ=C+?RnYXq|k^R&RE6%98~er zDET=B55~^K_j+9!FcIwvpxNf8KTD(}8k?4D#K6XBY5Rs**!AOfgrks?rax0Qi6DWw z3^g^unGn@I(J_1a9aDFpvM5;;Fsw(*{oi2Eqf@?HQc|s*oTJs4{eAs&!8t>od7lKC zH%596F?mvB$R!5b=KZZGXS0Rs(iBy#2i-yelOsaP@qXj;nsd97xO-OnE&{cPZ%vzV z<5iUpZuOLN?U;p%-hA3&cN&Ze2fr8$znb#J0@rG^kSM8qocRJKg!c%s$m{4YfqDmF z!P@nCRc<n$9t^+>^at=gmQ)z+? zfdUL#%v1_qYe5e+&c!6CGKkgPkZW+^fXD=_Iid%a4jrk|=^-uwN2W)`AaS52J66%; zhO|3oH6bibX;-gTe<3hHP~G2dD((%>8mkkl$h6ZvQCm;X*&n?mHJ0;oY{PtT7^DPN z{g;qB6ZAyFhX{u9LUo%-Xi#775j}T$NaHIh&vq-3(3EPXavjdGyht6$fMGbw?PkX_ zr8rVb$1Sop&z@q%;(23{n7}L4Z9x$NFS%&oF#61PGq}|KbhRcU>L{)47$8HCf%f^- z&8@+n0_=V<%7k`vfDcwP+|BieU>s{YrTq4!fsd!d1ZgsdcF%qVngGwxnO7`{t(s^~ zgc6Fef!-aycc1pN77178TX*okHBO6Q&w#L+68J6FLMgKOOU4~Y)J^7rVA^JDq)D}l zBrjbgU_Y$4tNjk+Oy3hX6F!C7>66iNe=1qEv-;y9`N^|a)F+Siq$nV8MGB!iK`Q42 zFEb57$9xiI4irPBU81r(Kal*nd}z%_SKAwkA{UF1o6-*+>H5&Wjw#&m8ajmFP+nk} z^-5xDah3I z*IvrYACLGHu=Alzj z)jZrVA}uhwHJlQq~_TKP<+A3XXK4jyQ;eLwEZHJ1&DKRk^h5Z%<|um)*o)R z0B-h6ekG(=b~14MXZ5QQV6=*v**iE2o9f&DqqOS(dzq1moseG5%*fHyfspYFa8-h# z7t(k5^{+Ah1K0kqvMs>V{Q_nA`2I^sX8(5#ngD2*k&uHKpaZi5WMF`n{Ezs{0HAG| z0D>`~?Z4No0NI$88367A3J2ieUxf)E2{W;=!F&<6|IhL@77GhNNd^eV{~7124+lUN z=4AiZ_+R@oGXn76uXaEjfEwnXcv!zcVRiug3)l`QU)#Up`KJxg@2mc5`~N8a71vk) zfA$3&>uVeq!12GzSB(EvzEotud9wlpWL7qS7X76k19I`TAD}M`8z;-Z^2H7irN43n z$iqL9@>k6QK#N&f3E2SW%Es|8WtkIj?*BD5Ah%5aJ`X_sPh9_r=_^0~AjW|H|EZZ7 z0ONg~A3y{Cca8yh1jO`!`Gr~kABbcoMs_B){}GY=JxWAAhL5|jE{dZ&PPPUs6fWF#X}R>Gcip_y`24h|-A?26@X22GI7svJ z7f}on96&YtmI$=W$y~$0bPKXEQc+sN0GgV%jG3196X`qU585m%-_J%8rBYD5EE+-Q zjwzlE4v?tKUN%M&lbQma5qQE~15iDE&>GvDI@@a|W>EFCG`EjaDEmF|P^?ysbdWtP zU?xKDTomF#oY>Bgf}++S<|ppYcQgSjAyB>T?d|+e3vPh{^dnO<10%>-cKarv75{Ei z10zrc;52oREM5SzD==ZReP%iJXJGH(V93_Fy1A5IE8(xmhT#5fNG6r;&gFkLyG=;B)m5 z8eU`S*L-k~fPFUMeS_lmb9O&A-d$sh)^#(YWMlxJ)QCCbCp#YiF-zkR3J3~C&n&N} z;p-Whyd0St?Sg?^vfH!PH83(kaKDMJLlF|?gE4@FJh^zvkw+&#Ov**dC9}maGV$Vr zcA405&#@C~YUXCuqY&?q2r^2G=R!Xn@TPuv>sWBdW@Ih;#HAHwl`R|M7Slb*m^&xK z(+QZ>c6;@Z4^U)qPGj}-j*pK|j6(o%0r_5#qsstZ{I3(pcF{T(uZxo2h; zFSq}joB%q|?QXY^_Z;Y9>i3b!q21Bx zqkoR(cVo=sQ%?`g!k0qX*LkAi0fE9Y-*#j4I++;2siIR{)xS4FfTjG+L7=ua0b%m0 z3S95C76lZhZwGQ9{e3cXS8VdpudF2g~B~#UziP0hr`;-dji%7J!R&7Be}O z%!z+p@5CUijM&1>!TU+R$S+nwL6Tb1x(mpnA+Rzl6R^p|oR!~bIwmI{Y&4q8!V=Px zB?fhB_3yY*0y(|O=zlZGV3}rYZ2vIHxJRb2=;VetB^1mYKm{fx0c8PSOmb{OR9wQ~ z7n3aV_8%r$<;ejQC$%OaqO)_?knSHQnIbtV?mPinW~CQ=?;99^Nd|kX2QbNp1{QCW z#0T>F_3uuPTbOuXO!9+(xNW^#6Ao@b9PQG{-IDr8?akYJBR~HjJp3^J+Rd4zuklnR zjgRK%{hJ9ic<;_4kizrloEwy0s_#x4ymQyYjxKpO`seD{lmA27P6x-B5uI! zHa78ixM392NOwj+kigma+2H^tdHLK7k0x7Y5G^75q1ohw*-KOTE%xH1A8*1HplLBaJOK>?Y=@DkEHu>r8g%}W5**jvhq zjzKMq0<4(w8DJG< zKGnCm;-3!9&I}ALj6*yn#_-_!gi*VCd+O}*Wcm<%9xiVYW{*Wf;s#!$fI#ZsRLc4m zFnB=_FkfML(qxz*jxWDqfiX9_LiB#i0bIQ`nppW_jgP)yfhD*v$n`M8&n1x7@i^1B z1A4-IS;)%(_qgcl3q|G&h;e%RTKJca3;>h=g(FuQ{-Y!7sp5Yj%7@HPrFYK7Q%;fl zwfw+VpT9g%MKQP?NW?KTaY#~3*6=kG>x-g}>mOY$m5Y-FY^7^G(dP`CUvlL7Z%P^E z9>mC}n)pxtbVHboT-^M_z0i|aoxKK0#{(oI2NCX0J1dPcW?@D9}QjE#2> z0~#9L_(p1YU?vF)#tRNO(l|dWoN9Q&V*nPmkmr1^&jhd5nGZZ)jMANFgBxnWVZlTJ z?mOcv57jI||5O3x`{ms&rQGN6Q~wSB?Nou%J10;r&)DA_6vRIT#_yaUwLCD3-NuB; z0Pxrl%D^qL#z$U|CPwPPClXMl8{c`d8GaZd8n^+RWLY6V%Y!8~XAmmq0t;5X9L~#=`I)&G3pT{)*X6AwIpR>w77L09Cee|>C zwPSXP|2+&k^HZ^Z*f}NW8OX?mD49AK0bp=RGK2NWT%~jbu7|q$=gb%gNUsBuod}Bv z6}3n&*HR1gx`ABOOXrU&!U!A9QCth=l8AveO)rzxVu1z2S^ZGJ{?sbg-em ztr>)6$pW>%(d#tAkjx??-Yv~dH74e#O@z=IXv9cZQ5TvfD!;fA)J2WyEiDU)eKq+q zcTJd;IR#WSMl_5ml-~vhb4o_vuF;x~wwoHA`~pBQP-`Csyme}NF;Q&CMEBTRHAb#; z(KYkXxs{vsk5z_X(|VA)LISU{g7S_Je&#zal=1<+kA0)t^UMYb~fBx<*@| zTdKEK1A!dk^p9JDPQga7{HceVXB zwy-1A_9(Ym7uBhjEHCwWly1|jk*~;KmM&LW&;m zY2i#qokdk?S?`6keXZYmRN^|xu^LAFx}ooQPDoJ+e2jx>D-sV1dr`I$BTBd4?FMm` z+Bj1PT#Ap>VzoAI17yG?wy0c4WNH4amgtO>knQ{RnP^VrdXwT_3v&(XO=1&RP{tadd~|QU_GO_Yh^%svPuU}NH-Y;G?&Zv z4^G!yx4V|)8zbl=M}Y*_T3#Ndk2S#$xc&xl7De$vWE>un#fjU{*=uWYu`mZ8OVTy% zmUs4SE;YM`r98)<4_N&mc2S2{{PZwg^uk8}B?Sjsw8!{c?-u|K)0?_TUKZ(lPS4gFbJ2HuTji>4P27*RduiXsRADP zfk(v_wjQ~G#2{VNOiYY|rmcP9byLx08?m^HQj@XznM{YT>=y^bc1Lo;%d|heT-`4$WkS_Dmn}ATqCduYq0q^+wX=;E9tr^Ya|Dcn|MZ9X|ZZO6wT`V^jR7l zys9CMdu!p%6l28}=5FO)*Yu<0=HbVI-w7{yRo%~e8A?Ov6E`e+DNaV4%r5aE4aPCr zU9^u)2G>2Bgsd~c6rRLfr8w&@%mS#-ri$=U186WxI#jR)+kkCjNIy9y z>K;)WXd}XdHuhUVf+_I?@e921c#<(Oy=6&PbVBpZLUBpMCe^YWlfQ+SXMGg`QlCiM zQl5C@T#7=kgXf*^;Y5Y7HUX@V*|%|(2CWmeplI!(A@Cj5tHFm?D76EtNY6bzI`D~AJUlMr>GEjPaz!|b#f=C!)Q4{?SSa{TF@ ziWID}2gE5N=nsh({WnHm5c8pM$CmN@s;)vwa~n^pU42>1p? zwBFoHAD)@nQ3ZtHcvTlEwkIx9NGK!&;x<8-`WO;t4ByXPBi)JBrO&3mM~SE*CWMFG z!9wCsS7e?KENWvsmPM&QBDc5d;M7WE)f#dp_t?4BAEB|2kO59<%eNFnnDl*oS=L;xQA*{ zS|MB1p%CM5CuKr0aTu;2;id2>;lC(>^6~j(VFpgm zwK*qy@AsokF%n#x@=3?Stg4EOcKji zdLaJL8xL^l2w>dZ;o3lgip-!f{=pb70k2FtQGb6OKmp%m8n=2sfMh-vvPoKc+Jgy6 zFc$BN;x7g#Gn#h!FgD(mzlN1lN)%$J*K(w%YS3mwNjSJeZWqXjdV#<~Q_F9ByjNEY zkawG@KEb9OS?UgZPdEQX8LF%u{zh`aCR}RnaGN2YFG@M5zmXKIj!32}G*^_E8}|mY z7dpF-syI3Z&qd4-iwRDsaxQ}rHA76Y34H#6&g?4n3H6248niTp;VV{DZ?Ok zH}NEABySKAQ=$33W}zP&HdPw4N*? zmp{mhmdo}WgK#p<8@!8I$_Qz2GEwfYu|ymEE~q4Puk)KR7<0e^AL(p4TlH^vy~ea@ zaOKZs+hVMC2e@wLJ#S@o;c^(C{l2pf)x&K3Ry%~<(W%Q`w21@ll&6|%72D1-t8lbV zTHF4y59(w;Bd(=7U1ZTv{lZ>`R3tIpPaNg-fa>>(+8>V7V_m}=wdLOolrn!crb=h< zSzFO@sqVnZ!vY71v}D2WBD1-P?-w$7vk;ml@@LKYcb+R9|Lwi70wy}Zk&`!2L9!PP zZGGzrP#wH%1l1k5XTh02n6OnW2&L-Byed?MieP-D6TC~$T(LHRI~WgRiO{#x62~$D zWvK3oTwEkbH7}lsrr79vV$rx|pnJe_#@xf4lNzm;`>l47)K9)dGclj?ZHe&U5a|kT zP|hrgD&Ce>jIz#|R_vHeE>~NC57nM*{yI|IN{uj~roulw?;B3y+VL3tbD8)$9yvWD z1YMM*1SZta>+N#o8i=M;5p>WdJXEls4V!6|^mH3f5cK<==XgwxFe7I?3qk(3@WNxZ z_AjwAWYL~{K4j9O`=r`H+w-sA@eQGVE_PFblV1rV2dI-PGF`50r`<`WwO=jv#kcRt z7(y8JUCLD&1D`WqB5=q=bc@V-vOw|1Y6+PYTcK6M;fh1!Vyzj4Pqb)C8R17oWAX4R zZr&3LS@%M>KWh;kwP4Q>qMDmV3+l;PA}7X)uIxo^81%^wpo0ZD_z~8Ax*YI*YiS(vZ)Nd1!oH;A7P%ST30YlxD!@AwU^ zn2|6O!OL~u_-+R+l`Hx~&tx9k;6!i4doMSJ2yFzlU+LQiopz&UN#E6Qx&3ygB(h)Z z=%22kA<9Tx(V!QZ8!}8Md!IynskL{iM@(NcHAt6rx{yYFNZqUD5*Wx7$p zgMX}2j_?bU;0fL*a8wr;44Uzpl>GarbURYPYBs%XDhIAky}LJW<3<@^>@43h6A~;M z_9TGsS9=5>W`gBFk=ITD*PkE2tkvHi-PQLm^uW_}Yn7fP8!FIdY>V5aua~Bg2K^cz zq{SgM!ENdr-!+tP&X`eQ4(8gFRcQaNM6dmfn;1r8P#{~41)(KxEnc1-OAYt9@;P5n zk=QdE3v7xtqgSY7oM%2h#2wq*$k|qSn47Dn@bU3T`}AI=DM3+Tp`{mLw!nsLw|g>J zdDNL&ovb}O>1>I*QIBt}P2?lt!hWpEe8#4$W^gk<9f>2D4VZ9ppsfh3Vwo01!?Uu( zn1ZcAw}@@J^3$q3*LLYbC-X9uwY4+XdPfquQZ4NfvMQx(a2YxOC}2{*GY>V}euP-V zfd=aeX=DrBY7uLt#Mrm&Ptl{b)XMy{|7+`Qg)&HW58Uk@=s25JgOgP38#?PGN*g#T zV8rQ(-##fy$h51v=V3Fr-P8{bVcnpW`MtMYAs_q!;Sc(zV0wl)y<>b~ob5##aQrpF zf)X8duy8)!+dTHwI!-zB;cFj8NUV;$q_KE`P&0(g-A1@dyR|gcyq7FJj$G1{xD6<0meH`tb;jEI zD5#cEDY>VkEmZ_xn+HH}f3tFJxY><$*}Hd9f=N2_7sFhqVspsyV8^ zOm0HoW|g_zOJs`3Jbu{bYlH6aeI3;xm8QPU4HkAi`l~iusrTVLq6CW|H ze1macS7XJX@yc!wVfY;Gn$yR~a=#ZzwDDBqDGXM~9unTG^0Sl8p~cw@{)uJDDKYo> zXvP%9#on`^IWAir2BggUB3up0fIe55jEUOm`QbGankmw5ssoK za~I9)1XNDPM_r4zRZiKe!?M!p!bYkuCYfEq^gDV^I(=bkGYN6dqP%}wLEWA7v5OIG z?-R{AM=O*_%yu7U$48KC>A^2K*O;IFYBcWEbkg(WVnE!=pHU{;bhOu14FM^W$8*#4 zIX6xl=yvh9<3SfdNHo99e?2%fj`__amn5@Sd_c~p0ypZo%`8O8d{6=<`{Ti~I4UoE zA8G4sbr%pBjY%U2wLqccpVcfJug5^HO!XXB$wkeQ`vZ4ExeFE1WZ%^*0MEzK_Y!Jy zm;giT!*}bt%7(q4yjz~h5`b!6jxnLEmHc}WBQkdheeQ9ThTKQMsJFN&*R_R- zakSCXB$+3gB*yoinlI8UrU?wPc=^sE1NQ9ZymNWm!U9=W%V>lC<`TcJC;c{NM6HR}feT$1u=XyScOf-=jFRwS@-j}=xDt@Izj zb*`8}r6#c~4Ue|%aHTyvko|GF8+O8UP(J5r@t7gUtRmisRDN!bwY907eWr_f2I;e} zE(%ARy`c0u?PH53$-i6psrYtPTqjJ_`!mx9lEK8C{%_@BATAE91C}yrTx3$O+ven0 zhyK__%e2&;c9XGwf^1P~;g6H|W&Lk_?}@i?T@O=HZW0#a--N;FW}xN2*DYA)8DyV? znfjS#E#qSIw>)U_odX%5Mh5QWrzzhg#EJw4a^5Ox6(7w3g@yWM7D(L~CRs!z|2Pv) zm6yg|GZ2^Yl9k%#`#oIh_Kb2V@5K;g%D+6#qUEzb(-rOBja%-qCFOf#rLu+Jb-$$#P4H;th;yumPxl+WJZ^m@GFK)(wuA-T^pOboqbJ(T>+`qqfP>Be13$Fy{nR{ zq$}Q~vz7km^w5^-B6jB6>4Cd+zV{~ca_mOVIrcFnXG}+A6}2rX=-biv^3(Pa{tBC|v(tKWkRNH`X# z)uizJ4db7S)9MVQK;fRr0-)q*1Yus+U~i5#HAL>3eMBO!1w0Rj2AH@u!@FP+cgi_5oS$dc}m- zSxJYG5q4eiVm~QdXluR=!2)Tx%SD2y1v3Yvwy?znkscQTeqXrHs(#UyMEIq8K;Yke zt*qo(pL>TFnmv;Ew}n?Bg}sJ+ex&bAyLSrDl(sNG0*RLUV}DODqb{v06b-UITEzYw zfp`m%^)5{)T*I0{l+*kKITxp=aWdnf;`gRPYUX*{JSUFN*f#j}+Hfu#*7O`o-f}Gx z&=&^LUDj5K+=qvFh_S@Q}4p6UBnR5Tt%_XZ?T`q;cCeq zL`Zo-mD{O#{O6e9#S=#Y0q0oFcmRP7ifs3em=md{NOx)umcWZ;MR7z5kDG63vC)#{ zr7rc7wcB~%GsvAC72r*J6&W!49mEf4b(pJ5f)9ulLM#i z?UBqoAkN9>u%4Lbw@pbmmix5~Gxc+qEIyXL4f(^{um_yE4-lu3VRYhfyQ|<<2cQIbj8p{$WOg zFGw8FT1MieCABt@owD&Lc>BIN%S6*VKY=627BQQhyjvaWzjHWv7C%m^{fNG0OzeE+ zZvT6-vyN2fPAWz6j2wcT7&9Z#6bRBGq{&zmZucArM$X->4e-s=uZz;nXr=kM0-<2X z(O0beOBVO0PETzQwLM92hDMQx%s0=rnO8)iMmkB=(0z2)dT{^l^)>YVZS z5)w773w-#;udB{mnFMrhpY^@6Co#kn6RugR{W7QZSC27sd8c}0Ul^_X(@dDM1QZY@ z>=UZ^&5B3+u%hR5;lC{&n{oIrQIx-PsrW}~nhz_ZD-|x*b<^)`mxn0^^=WS>%$PNkkS0Vw@%Y)I2I5E5xR8hwq2b@k#Nb1keP% z`p!Jy3xS!6p>%A!WZpoRcE=yN zyyS*$o(pnm_=WsF@w;%_Xs;!as*FKKmt3VYWl^G^pfA^17RwB`|BGesSzXh!Po{5f zv!=v9DzJWJXJ$7%(Abs{jc$IK5UBNtuP%Ih*$a_HNUrkvgnragB6V;5_WMJ1{i5nY zQwmp`SN$52`Ang}eM-)R{+%uEAZ{wwx&Dp4iaVh~(!n;Kkc@K>Ne7)>m(>qL*GTyZ zJidATEUWAXk7TPI*&mwsos$)}l)SYr;@>hIfSlR;F4oPX#(%fX(~xCACbCNZNe z)aMA}ALD795CbqQXdoO`FPOX6dA$BY#HVz6roR7eXc$x3*>beG;|#N2DooYcS{#!i z02*u>$Le~eZSb8}i&V{7#ki%8A;%ic<-F(kg4TZG;qxoN?yx$Z(XBbWMZHsuL=CF7CB$CFQ$@b;Sx7YXWZNU6pnMy_9VAyXifG3>~Sp7mRJ?!&4-t<=6vH$$J;!E9=>qKR|Y0Ye@)QG5`T*V@S&u zTeVQ(xge>E=79&{%~X`Br%8c=VaCuf98oIyM{sgqD3)Box4K8E=ygC}_1FB~R(ZmD z`lO6>#Aoo@9JVUEdu~(MhbyHCM^^dm2+9c+Ou>?#^->pyZ#g&#n=m`ode+S!+qtLv zj)m`XMCtOs;j%yp^Og7b;Z{gokB*JADnffRo_*iY5-3ZM13dft&?ERR!e^p&GfNKUMyXt zr0I~nh-GoMvm(_?5Z+`b9j5}xK3PULXDUNYm|4nVww_Z$M^~ynwrMt=`)awB+KCXx zE&RT1?u4#Jvfe9M-&ekjgdv#ldhk0bpPqkWlRo?_p=hlWvwa!Y($Y__8(WkZROF?` z-d?M-PZbvNF^w;M>((6hdCoF*skYJ%?mZ%QgXEU7FDH}I8zi>-E+Y9D$1;CIhiH8( zRw4F4{(wty$`;k1%Zw(zXCTuLRz%htRK?!hB8MVdp+J&Tu_?=+njbaR9Z~hu)->8M ztUK{YRu#>aI{yqNGRlkBPZs&(CI$PR8$@%*@0YfWH=DY!&VBzkD2r$1O<>lel%_VR zWmc%t^PLj@C9wn^zNtl-lqH1KoQ!h=$L#^+f`ae|+9%ZeNc{zMFC9J#W#&wwVHKH! zN%51nE4ti)x|H6v5Akm$^E@Ij4q*XiKJRN*{wSwouo(tTinw#lW%1E8* zCzv|Oq zv~5mI(Vq&FFW`r>`_g7MNLDc&1EvBf0@mJblvho1E|bPly{k0nQvE@6Es+}9YhJdQ z#*@^G+8^$i$IiB^2O<3THTX#-LDLa#?Ihd=0rAIyDK>VydgP{jsk1P%f_=48o~k9w zqoTq((u-~8s*p@bsfm=3 z5&HhkUpHA$fo9oU!s%~EVbgaKm{tfwjyik~Nr7CmjT?o!(Wgm}7JS&j6YBj+>Cnp2 zG(e(fgsYp=0nc6(xeofs%=E^yj ztUqD;iH*7I89VzegD&%Ry-4&Yee&(}K@sw+xm{~lHvKc}AQo3VVRyL6DzB(yyGh>- z)bu-Yk35plX{lV@R7E2tU{%0*N(S6X^Tx~dS~HDArudv#6PgT=MJMpsbBV-dF`-J# zGiGg|v3_fwkR74!{`$1lT1In|O-R@?Qb6%ASR;A%#>;7)#>;5p99DK<;zL>C1U)Yz zI(%q7Svj{yc#Xh~9SRvA&#eUaiO&_)AtRzHA@fGXBF1Q_kqPiN%Zy#W^nNjfmPP6z zqAj??3S9Dk$YTaI)%-jv#>6f{AWci9{hKFSz5`qYV_N{C5D+wR&~5NbHBxW85kWYa z0vUAG$n={rL}x%3d(b3$_b{qXz_)|g<34)>g4{`WH(%gg%N;4W!4ihM zoGn%PmFv-x&{VuK3Ekyb6}eVqEswn4rb7M&B0VrB>-Qqm!upd(Y?3 zm*-yS%(o&X!~P1k7h6Q5LcxkY&&IJBcyw$=qDtn=#k{| z>xb@e1FN=E$yO>?L#bTI79@&R?Z+gX;`doqTZ=MG`+%uyusQlXcg}92_MvAnUl74K zMC(^ocNNGSCQKlRz=z|g0#h|CdGH@4H_o8ajpE1K3TR5j9V$jskAZJy%FF|FwR!E# zsU-5A`R(Tg-0K9*xWBPq!xo)I^@6uYEhniSldWK0KCue7?j)y7vVVVyJ&X@uW^Ag% zKy;!fsTf0$x5S22s#5IhG^_F?s@pXl|Et#O-GJAGD_FQA@MlJ5UeDoWj>L=;xHeW^ zYQ4x2bhk#iVfuPK{8#+%ki>_sl+iD8Ox*)>TxKfu5{;IZ#D-;Mm5gU(f$-<(g8;{no+d( zx6vhx)2c+!vMV+le2x&xqNye0$jT-gZmqS`-(Hlc!&fN2?0Bwr`%(H( zJlaY-DNroec!{f)c|WXVTCMB+k|*z;_w}ZxSg3g7_|+`=z;f_HI8rXLn`vf3(^UO- zbpK+J1+wTIXPW*#HW)!WClj)&-fAmsu=%+g1y6YI8L}NGV+8QTMS_r_Nz$PN#H^XspPr zM_Do)P~CmJbPbY{UNXF7!ruj^HA(n5u*-~H0u!Rm)f=7b;WrUwiOovVD#>h(!j&`l zy|#iVy@1KjP8eEA(*`oZwbgm!B<(rSBoqQ&#o>`oCTfgl4Eow@K-%2MlcQM{<^rU5 zcy@kMQ+tvyp3-ZtUu(o$m{G_e&w-An0?X_bS?o25=2#Bjzv{(DV=VpF)ZzC03Hw*l zRj^6ws1uFshH3LiXDKl83V1<%PPo=|sQJ#HOLcUZc*6OvUK+GR+y2)bmDr>l;?MOI z8gDY()w+U45uCXDk#B5}OKZM}KDdEA@AQ-jEBx1no-K(3$7tt25}`df>IazO;)rmZ z5<60gB|4BYl}V+HGBvL!9ZQtPT?p2imy}Vyy;i7GZbmxFjLX{pnQ}AR3^coMf9^J3 z_WPAKfft;n5qH*-(QsT|?Y4Tu%eQE*zlIhvsIqTxR`X%KrKQ-&HMZ-X zc8>g1xe>E*+}Bse@m`>Ftk{cL`_6y+N#)tcX7$EForJ(?POxxb|#tFwr$&**iI&z*tTukHulZ@&pGdT?_KYw`=NLD zu70|zt9tF7>|WKsCpxazGdmO8An_t+?RI>1EASERnS~FPYlA$7I9j)aQ>iURq<$_v zJGTv^EqB!mSBx%FlT(;_joCOiEX(LNVmRW?tNB#S5Z8dUL4B)fb4R~1Z1jTmryM{u zqquiXNYtere>w408PYoIcf?lig3r2&C%cQQa8iP=N(F-f@3tYLP9Hs723CX}-nXKf z8dh*jzT{{Gn>$)gecnsQ5DpFSp$2OO$TxYmYh@xB8cq?FZ#m&Z~!~`fL#SbiZXRRD}&3ekLK*v4xUP=v_tY@a%A8Q|agvr4N?4{Jntj)i&Qx(Q zA2VupJiV?<5-L~}QAp2d?9{69!uHCj0i-9i4M*Fvq+w(}Y!}R*24c1gaAM=f{Ro?* zLWenLh?KKJjQ(?zXQaS0bN$U!P&kk|om-Y&n~QIFT|KBxv74ILxwg3PbvA4DPUgF+ zX0kTA!ict`xBx<|g{w^(E3^2lxY_L`hQj0z0)8&u`_79=oUAcB)(VT+?*?W1n*H!^ zGT?EJq!97@r0!_mMV`?#PW&i*33#yG!EHc-+Sx^6k$3qox@KwZ^C@e@amYek%h@uY z+Y^o5wlXI$(FeTF+%L+O=MVGsj)lELs2o?{gm0_G_D@_R ziAc3qCmJ0|a`l~*0xmV%D3t)2-q{nh@?ETGI2hyOP!&+WdbGJNq_?t&#B2;dCMdJX zzYk_={#e6#ImoQ0p}8&-?!zK{1rC#25nv*jG$-1;`O0DYknZ=DsKRz3ik4r%k)}b!x z<`X}3j81KHXMD_qd=IkLkQBd!DN?@}nT!RN%4;E6``)Gp@E%sMaGn@0$X@OK7IQ`^ zp8W3Vizh`KrdwC;>Io3Gwgl4OVG*q;==!Y%FLf%cM0$#Qm8f9MGzZoTMVtxby2WTK zsyEPLR&!|yNru|6Zj2%)-BlH&Pxhe0i8L&zVj(g zt}}Rn=E|lHJkfy{P$h9R752tgo8_#$?W46N=8`iv$^dnncjIFA=he zlnGn)891#`v@=(=A}+QHs1*xXdEMGHBwQMdtdpHX$91N|VK9(2<(gS7oU6dQbLgS3 zKQwJ>3iIi)-)<>WV)q|7s#mW)``ZYd%^-DBrteYEV10eCIB{S9`rhpozgkJzJF+?@J=v zJ?<*0#2u{^Vw7VKv1*M$T?xoyAehG``C|?7yNvI|>g0^>x0k=@jH(x=7eA5l+x1Lx zk`8u+v0M-(s`*{mvEN`b3#ZP)&OSHnyZvX>T7+jO_PlfKHrKF+L;~cM274MVM1Nx} zZ}|7r%O%R`LLm{5G3l$cIDoV#)gbd0q!U1>5M{XXUE}P$NVYxCT_%H*98mR^2&^3}}I2~r-tczcg)bMkn1G|NtHjEp_`;N==Fc3Hg z1Bi{!HS7XmG%^OJvVk|aN8q(TQBSe<1nYjS5Ocx90Mm}qI2&kk`Mt99pA&)UoB1}8 zgf~GOA!qeo_AT4`5RWWr5{MbF7f%d?xC9rLbw^A*Lp5wQf)t4$4!dmiL+kCwSrXWI zxriZA)KkYQM26(N^X#bg-5#Q-fik~&?xYvAKlGmS4CXW&f`j|5X8%vr4qXLEY_)0<0k zLenUurCK_3OPEf9{bl->)9HX1bYFZJAj@f{V+%>@T?h zjnp8AHDr_2(e_=XM5{@sPrF!A_ z+mpjqe7_nAIo^ z|G6^pl`MwM;yL{{Jqa2R!6@+pDtFV5IfpS^79C2}I&BUu-}jX|!46_Y?cqKU(p2&g zZg|H_ieH++c51~JBQxA|9l8p1Gx%vxa0ZAQUcm~pf*I$WGgCaQ1sVkIW+xs~8ZfSG z)2ohnA|Ohk9xJL{qdfwzKqoP_WlOtC;gLszEsr)Dm=y_6p&`K~d7TQSUzzAkX2m`} z@_zdH1q>fg*@((JPQYh=h&*0!ho~zAb7`MVfk|#SVC~=18RUm)H!!C_c+$cITZ`)qyVKB__p2c*-9V>=+&EN8~ ztQ9Xko1RE{4t{NrnAJTfMU=$Zfxcl1*X}99$!2LHM%aCmKmF6oh@)9fURtEq#bmUnXN^x5mz- z#fL+zxWJ!4#zU2$L}B4ojy9a7|t>T z#e#)R%Uk57#!7;>)7fL7Ww{rio+nBiocO7Vsss*yEjJr>@%Djs=9b;Tbkk>>VKPg$ zC2@1Kdnw6GDwGen^)E-aqg-s-RqAIS*`R=?R*4<^Vlh*-%R3FfAX}%fqE1TkgjMrs z8>*+P%Bcw%Vb*S{H}_QXSCfwGfAU075e9)#5A8ebDe}r=AJhB}K>uOYd45N$>cH-v zzZ99^$9q~QGMw`K(v)(JE@?8EeW#ra&VPTdxY!s~N|8`@X{jbwsB`;L0GThzrewf% z3B!2?86Ebn7AZ&h4xWtQJ;0lY!OHZ;*+;6-=FvKQzUd;kap{^JS^cEaB)%l7h9B>< zI;whh)7y+s+t9#B7>Ul>pL?{(luQ`Z7wTwmq`<1PLislGj4UNR>b6s4NZH;yrfQv$ z_)I}s1UlFq7h9v*>ra&>wU` z{Q7!Jp;vP5LD&Zyd(HA`NFlGskFlB5?&&`V;CL;P{3F&@1Tag~S0MS9`g%PnsuPq8KzJ`$tN2tLHYcKt_XhhWPu4S4f$wU`muWVmh5?0kfZ~-> zxeb?q6)jM{4 zFqk2josD)%_g9&q_A<<;W?QIh5+9N43V-!iGdEmTuufiWX9JQymMrvtw`jsabUQBo!ND1;Dc}r4~&cWyS3Ew`I$?|hB;diH@o>O)E_s z+uZ04xv`K#Z!r6IQq;vCMYzC^vb$uG${5nzEPK726uJ~cjwk|!-xLfMWM9jc^o z*`&4ADZWF0?_+-*=Hi_}E(DUGj>dSM3ygypGF!`Ge8DEk;+OANZs_hbirrwpOCKS@ zb|}xw(GLxPU+r{%$Wri!L}5sMxMP)5$uw%q7ZD#guDm@`EHl*V%=i{r6$YyHj(%=*`m_LXXYykFS)KK}|Wn>pre?XgfEs)-YRD&2Bif_qB6Y=uK zD~ZXpDm71bDr--UanE&VHvd?6&t+jIuqOy&K29AZ;Q(~ssIeC}qQd%p zNSmv~h>qWF2FquQ%jO&RNQ~lS-@MS?8EhE`xe-IwAIFcPaO`e6guYCKV=V^U)%3Ukszb_PN z>xsQm7i03MuL@qYnxLr4K~BPtFf9R>JUDK_bUW#%Ys%Q>qY(}qEu2u*bm*%tG}EaS zq$-2rDxn!Ia3daQOss-ZXULnDAYah?+n$Jw4C&|R5T;pq6Vc|@Xg zdTuPh1N-9z^%%@;N^a@*Q|F_Yrl!{8arvygR9=z+XTJ+xah) z)z*`kHXTIDD8;MF*DwHS6u7$2=ex@Z6U_s&|VlsCqF+0~|X0)@flRadHb+X@`F zx5vtBdI%Qlh-wGTVw;tdBq>dfiFm~Cw_9>kiJ7_DM4n=a2cX+&hsYsoe+>Om?hDTo zE-JWYAX5ELihf^`_(&{p=IFw(lJDLtslR&BiB0ejPDI2c@%V?DEoU?Rcv8;eH~Qw> z@hwU_8h@~51GG>9^?60${W;ntrvEY_w8Hf*SU>!!AeG@5w*m~9`6K^SnOzuW!cJ1S zsFN7?9Uu0h9(=9$T|;nBnY@S_X6Z+)ct|bve70PWIGY5XNJ_uq0!p;#u$Q z-Q6OZq>QsFPI`;(HjsH$3d(cJunQrsPoZxjdE3BG=c&~1XxRKlPatzfDSB)M6!(Iw z9vDE+fvRzAEfbKW_DA*PCgmnhpzlN14(}&iAW0)XN2^bT@{ECciUl3szUn`F6_n*W4;3 z99Ma0z;o?W`BabDA7m54#`+AnjelM%JeK{B}HoXjqsug7f1%|fekm9dQ z1BAp#>UCpGz3iC)mV^n+9y0a7}%2@(r;a1KKHLHJfD`b7dmqX8pH0%48%GwGkJy zZAV8`EdM&n$gEkhqHwe7h-YciIXe^`!;Un3sOX)Q4J}+n?BuY~wes$rJDb^?(=k$B zlr1At`7=76iV?Dvv2SjYdp1i)R@dY9&&eC|290_V zM*$SvOsm(Oa18w~XqTkHhhMrY*V%1|;eJiTn)#TQcn%FHl1_hT z+_~kApL4B;Jiw}>v0LSwDPwafsRB4U1ZxLu*{u3x^UsUpuB`2 zg`Q>6*zH-f(2C@6Jt4I{7F6_aIcH5_udeF9##oQno?GXicbZEImSokWS$zy%=YUFc z*nhCS0RcXe+^4D}JG^|;Cgp5qnXbJa@>E^Ln0Eix08nF8PC-EE2TCI0YU3&*8rqb= z*Dk>KVgiG&9#{&vYH`Ch!zk{L8V@pRORyE$*0~!ey<~1TJeXwhh`6L9O5i^>H!irc zzxYGV;+7Ou9Bu+*o-U3&*LYZ z>K~1$;`Q^Dj7POCo7Heyifzmxx8@e@b1oJFZm^wjHUY4SV2^`qZ}G{B8PKYeT0AUv zF8C|+^%>R#Q4E$j!TW)(t)Kf+sE$y^vf_}x(#(q3*ab2ll|uzH?aC9dSg!RKlR;4O zh$v462JatPYf*k-XgaAfm0(TU#82ZLo8mHP9ecyo_+63c>Wr{_qqYEieI!IryKuY0J_X;-S=xZyJ(DB3@8#Ntmf=}oJ?`KnaxMC}Md=wgS~WYgL=0R*xi@Gn`cqbTe{9*lL81v~S*`=^wwis?)rB)7 z5?Ep)xy#g5WnKSVlsWD}pZgN4e?^2t4eq+T|F4wdues_tkPn}j6>FknVO;?*ewweD z>QBC@4uC7{$nx)l?9;Ia^?q|&7~GsLzb66*3twcNhjiNQm|H}1B@qP*mT6!dz`(-Fn2WeMoEHg z7sAeh-pr6~x#r&b$Lc!-k{zSd8{=>6ID9UF``9jcZNhwrH4GtrMfw~uiU^eA`^z$k zQ?b@~1*4sqJ~$te6l0zrmod87yR={QR|@@JpOUzdk(hXR_&D)wjZJfONa^o|cmxRN zN0XBZ=RS;H$#U}B<r|;mz3|`#G2IWyTFu*R zAjEI5$m33D8d?!un%?l^OL%sk91l8>gAvI5d+8mJNqUpga_dxmJ!CL_mMest7C?y_ z*JwE;ReQvg)>gK#wM`ee5p(J&H}ConHG@B^Cozk^BSWLpuDOq3`N-1E%9L|(QSU7_s{40M!DE_c{piQgGlEokN4OED$+3 zyUMqhI%%6jb}Hx}qPdKw5-pNllbsUN+{Gf|Y(o?pO0aIG3{7To&xdlM!d8S?HwF`_ z>IS|C@8z1?Lwdo4&@7AI4>Z@|^eflN4a&Su zD*$*g0{HUH#W%_#VhC8`kcb)2hOQ)svV!>2u-^CunLXdUYh`N-MKx>RWzW+1n6Nlh zTNi})5h%kvlrk#6u~ENexBReSIwBOlC)rm)`uM`f+<^RGCJ~l1{NqC)0XCMzEw&MU z)AmAiT&@}kV&jejq;E>#CH;>EZ8zRj4cPsjp}js~Y~zB6=XUSnrh2UfHX#8}WX$&+ z`1BY~zV#`GL~TK^M8bUa_xwY&Pgi@iCe>o`Z5gj(BY#gfyqAxf+B5m;C5PgP0A!6% zu1@UD(_8Xj{w;&~{0ij|yWL`61p#YtaP7W>@9(%l2QBwdbm*o6ufa4Kr=85rl7OVS z0~T6K+ZTMOH(DfQLkLwv{MfOFcALx8&1IRY1SBV%fy69=CS5{IjRvh6)nJ6zq|^$~ zm0|B)n9vXt>}(iA=}6R;3@D>C63I4n&QUH<*24BBJ#ocm)a8!vxXS9vBHt|quKcN( zwZtK*4rUja9Atd1dl1Xp|3s9fN7+Z%knm97Kf3?Wn@~3z^nNr*SY8(yF#;hwdfT-A z6b4LvQvJ{Yneo0jk*Y7kMFT;uu;Ji15hT|>FX6N?jGEK%T^PRIm4;Wqs$ntSWwaXd^@=xzAJ$sw_ILaBpLYUOBpR@r!IS_d0`!f+|O zIf`BK1|*oMs5tp32u%1WHSVjtI$RE~i@sbMbu&}#lGnuFY!zja3d(c{v&eoZYRD`? z_n^oHqdkjoP`c;H7c+_9*1tQyrrt4Liir6YG%th4n?i6Q(WVYoJE}YnH0U8Kh`TrN z{$a9Lheqm08NYeS1?B$LiGd|)kW%E)N61Tsw;s|oX>qbXL(Z%A9dX{=SGrpNhpl3} zT@xi=DGfnz#1wy*ilx*y`?hvA%R)v zdSMcbkEu_F&;Y?yVL`_Wb31;}U5Z>Z;uFE<*B{?TLiHnp{7!<_!iEq;RV&U+5#tdV zNg>9^Uq40c;QPB$ixXDDmS+}OQL07JM&p8`Q{PLJj4Hx7wKHzk62sHZ)@RV>Kj>pt z!{(v+r>nbM$H`8y2EMs~MGA?E8ys$}yTgxJDTahVt_pE?yn9}IH+mXvm~z6QNlj{i zM+x!=^-GL^HeY-{C0~-BY))Y{^4U>O{uFOMV$qV{6T=5)i3jehKoRmPai#OJ(MHOp z+ah<{_R7aGtc$%ZkcR$a2EAo!hXaR4TaV|7g9cuALvD+DT-9}1$c@Cxd3OBEY8m+m ze7WidTdmpM$&o3ht&zZR_z=d7747>r8=Zn8hlZ$d>OOOO{^IvoAH_c$wICk_vJ1N5 zn)QtdgplfpsEBv?ue{oO?k2rvCtV`q!&PKFq|n_JJxOWeb%z(np~W^8KN!Vyj(Fn2 z4d;K$Z#CiL6ZAjeH?eWU9Jgz+ym!R93}B~?ClQ)NBgq-<)%3dViM)0rj%6;A7+>)I!TJdR5*xQFbn7o8VL;;n|R!HR^o zzv>p$Qh7UPrd#8(N3xAI;<-5GL?I+Xc7=OxB>80Z%y+Z8TW|(zInWHF)*9q?TYMQ; zvvDV)Nf~X;zm-u0dCIdH4pgnmdbUj|v*)#+TB4-U-9$Ik4%+$v zvY^N^1&-v-hR6>p`j8!+@a%+n5N*=?q|B zD1v3W9CMUnBmnL$X8~8ez-&EO$^$A$Nsjd2mZkEsFu3Zb#pT6bcS`t0PaFU&K!8svd2{tV?%739%ekQ5LmyMKd?oM{8Y3VaygSrpFf*< zYATl4jl{^4VsKzzygjTP1bwU@6%AVu&hys}28~mtO*CBr@TdsHAR9UYV=#s@uDp$^$GpBIGC9 zP*gQ{xEtLGj%OriM#UF^)l#P#sXO!K8u50|v?KhS$aJut?YriDZbj`Jw-MJU(9&Tj z$)USHU7a$6_kO-BufHcl&gGU~FUSP_9BctRLdqa?W#_6)4cTmqeSW(&jakUR^G)oG z%M=0qWGaMc6r5_6^`RpTit=W`6>> zte{I{-05v%vQTBOS4r4L7Xyw>uVkXT+}HKaehZ)qXO|}^K*h10Kkurxn2C_&Ot$pr zWnireI_1_T#}&A$J1W=;tIKn^Wj z=i%%&cD8H!Cw*u*@M9`{aS#$S1AM3M8^#7&JHVW>_vViU;`2pXF@2v+0DPRSJ*vl)OPev-dnMR8Ir&LD+7Y0LK_6OFx%Ez(V z$s82BWd?H-BdHTxGk#fr%7PeF!KTF6%Fn+4gEQv%Kh@a(U!3t@mH7X|8UI_E{r`Bz zf2G?0?HMyM{`({}|HlaaYyAFYZvXfC@Am(-{J%`xe+NMSUxEKu**^#W^YWj)|1J5q zvkU#-lK%<(Z_z*M@|O<$-;)0cVq$0cSMk3UVQ7vo0r>Com%sh14gVt!e<{WP^z^UT z{2#UXtEYeKW&e_F*;v2!Gkr|ZkQmmbZ|_@yaxvOshE)rS8H#eYZTi|l3N;3Q;Z z`WiBhFC>?p^NTd*Wc?zZzo=)Hugd;%#D9aCzKCN+CPL0H;+Xx5e`aIjfM#d^TlOyo`d=(G%h!4Qr;Y!N^MC65 zyZ)!Me>?Ku1^RzvW2V1O_J7dd|B~Ax#*T&#=5|iD4*w#!<@Bw;Fm7R4CH4Qx#$Vn0 zhvya&vUMZW{9=tc328amz8Gc3uM=Yba-g*d=_Q@?t;`JtZA`6<327Nw=or2*VL?Yj z<1f_vD*~GSZ##eA{Bt0^u)dvyvAL<4)4#4Pz1qLu{q6NXO^KO*)$=u^|9lqyvfg6) z*5+33gp|Uz)^^TL#twwCwnoMdHdJ4qF(+edm9O#oU$pl>2mYt8GR8KhPG(Zy`gGY=Uv1RJ-L?cU1;&L}B1x<-4u%5{508T)#w#y^F?|Wg>R4aGu>vKP za<`mHZkHXZ6l+`{$?{^zQOY+Y$hbTdFcem&0I<>3RiMJmN+1ChptwND;gP;^SUr7{ z!%ynzMSn;_i(?Qr;9(|^LMv;57|JB#Mwd%?J!VIWVb9N3Bmrv~P#_0K$60_qE};>e z0}u|*Dv%Le*0|te96L6S25^#fbPplL(-uB(u8;BMzR^%$|NiOesF~Ttu-Td3pu8}G z9XNLyXp%q-AtXi|)V4pfz~nUcJq5cMs+3;@=kkp&ys@Sdg{m+lA`pn0f3zT5OdQE1 z8#y5)(EbCEu_TsXJKpf2Zx0gyCKvMk#TiIIYnmyLz3v7wQ<-X3!8 zYvOK?3ZY+n^B2vPfx_E8J-AOaJv};u?yxyMfM{iG1_t#^;w1*}ytHID!OzKqUC126Pzn_FyCJvt36TM^hDNs*6Uc zCOZ5C^ea&;H@PxSO$W1t;{6onx1igwH2+MX^YL|D+;ah-VSFG5W;Rm~H~)w>ykmqT z0*0WVrjo2myl&K9(0w>IaKTT(8z&YgVBk#LOu^0UE-s%Y1wR2lsO4oSy{{{~mdnG3 z2NEa)FctpZ4SWtUZ4!b?h}ivpeRP%MM8s-hU}<>piTOE%2N-y;{i(LR2)8}b-3zC; zeW(WkYEE4vdusDdJvw#R@?}52{1-@vGQdCVrY3+N1gX= zgoWE~QUyxgw;~#V1ySH%?1X3Lu4CM%-v(U4Kkp6uE`0PUeez2Kbg9C*HPt_m1U|aL zd?7J40xQ=6u>L>m>QD-qjjV}2^zW+GoTmZU8t6tKE{&flnzJK_vm`=nCUIP*Kz|sS z>OM|@xFZ5L1jwQFC=Bla3$r=!3!!}VAZvc8R(L%K1&|IgX)if)5>Hr~LWhwg`=qzC%>=e$;5djXDBA@WkB!dZc? zZp3^*5Fx4HFD~+R zVE}~48k`Da_>R!~fgO6s^0B6wFy*BUw08-fNmYaY-*hWc4ZzwE`-lPTV96rNW zm$?LraSOTewY7X(ajmleC%d0-eV?CbE2#jFhWG{BlR97mye?)vL-+f4p@8TIq|azb zoV9{I_U~5bU5fVL9|`n0L)AZhTtD19;+W%l9;wl)AR(7uYll||fA_G(UBJ0`oXZdY zHUtrTMQ8HCXZ)rvft@>4ZWtODMDwGMKjdIJNMQctjlI zh>^9~(Xr9nH^EZQH9vx1oAe`f{P$%zm`rC@ncZEx2xyjHLpfsQlZJhcXhJAa-3HLu zh@+h-G&r-+5?(OGxNDX7dp9bgW51^-<01rr>6044!p~(q8LNerhg)a5e*!mO(hv00`z|Bd@-eYoRS~Tf2|? z5P;BDZ_Ggett|n>o$tw7DAEUg)Ehu_hj07>@T<8SAic*Ibq5gM2O$V~>r$q>)*l6w zjDz#ZyaN_nxxj6({_hYv{h;Dc3-(msl!2at3gOqhj zjf3s}=ma2|bQM8i+E|@%L^Rcn!2=d9p?|o4$R2s5j}aD2N3Fo%r2a(olKhcM1&5z? zOI*y`jO#LYGJLNo<&(7sMz+{N=hYv#R+s2p;ZS$oIAJdx`NrLit>6{&z>~I2B}LhG!7USX=oq0~0xXO7+YA@-;-@K^ zNmUlU^{8jo#eMx7pK+kT?1Vcc~|H&$xf#w&zP?inL<1WWk)NzyIqsnU116| z5BWc817BBE_m_%$kKDZ2dqU?Y;{DEG*5ssa*AoP0yjh1s&^yOR>wmAb>kBhHx@)Pc z)JOT;WuDsC8OOfapa^M7&3f@f)DGJPu&mc#j!0oxj4y}W;kBNKU=8PV7rM^m^Aq90 ztJ|>q)do0kg1!+-DRrG@3@=$bZ5wTivp=P8t~PP;p6>`*!MdQ8QsD{h_ZqE{6?Ee` zEvx;sDdtQn&Pn3lHB2&+XJ}1qToC7Fqde5M@W+MdDXAiGK(J|vU#ec|LIMMTg#L=K_^7*>|JYJ!Y8+7zM$zr6i7QH=R#Cme;u;j_R=q;oHO4}=22kDTGXo}?f zlYfFI388f=U>)3ov;xAqW5>X)vXDU+tN&&|G&8KvW{jy3RgHJmba?Uzi&#FgKda*p zlB@}(-wpFR+^>uFQ^|clkhxv1?`p0}tR``5slFhc(8sY5|D-(bV{l#7FCoJBH9Me! zFOYbm6;WC$+ow5^79{1>GgkuD1ED$+!PFO*|6*_#wb@yI8Ip#D;azm3r_Mh*2oi%7 zk)MYxMM)!zq@gczyIf&Yz$CU*5bS}Jy?ke+RmI6_<9NiuF_NsBG6$>s`;f>^Y5+tZ zNp{t*t|-+l1dk_+*-3J`x5FW*Lyv9Eb7TklL4uaDh!iP}ZwxKbPy~uD+bV1H(WLei z>aVj<7W%44am7k{(b2E7Lf0pLo6`G7Z)81{$TfMzZ^F*Zz>hTYNs~opKmqhtT{o8@ zq+v;Obyq*cb*6ql<^FMfW`W$;eSoo<69jcOW$XKTQY;g5S6%-II#TYY8kcz}5tkY# zZCl5tB*MtfI5fGCRxZY6VwD84g^5;&=l}xm>Zk;F50kYUIy2}I>#BF^x~nUKI&^3U z#4rXf0dwK%8QeUYMqf9#UQV%$bR}A+a4;5FOzG=R6a7X>$+d}}g6hw+pG(-r&zYXd z_OsbJO~RG$p74AKp&pj3wYtkxwQxrKp)l`%l4LatPj(|nUl^(6vbFdWOCN+cdcW6pcH$l<~n`0tRNTw58@o8A5&5tD=buyPf|Kf6e{<_N{H`GO`ot zaS*bDO+gj#c+WkYJx3UT$XI~?z`KW1$G%ZLQAM(%{Io@LZ!~+9#<~I^MR3s4QM&$R zY*0leNW}lmE&QOvQ2i0P0}ocGtt*HMbFm$Tn7n^GI-a{*u=NP`ArhP;2PiSt28{Ca=lMp(6vNd9%V}d zQs`8z>eEjpCJVR~JT=KpDYTkUt>JS8cKdK8V-y5yGmK$hU%gqrct}}5hCFJMSQ7Q}W7=9K4a|}L$FmB=j z(=p*c-AXk4qY&7Z;uT~LdYyF$$Iz4?;$tX}v!UrFKP2;WQYY38-@POw^qbeuMydd`3lTD9q)|da$!)PCf9ILuz**!ul447Ob zO<#>ZIQB4IJ`>H;SFD-lx10}elQQDt?T9xiHz~SwoI!*V#6y(ryd}@_G+<$nj^`3s zf2_>8H^-37_8XmiUZ#3G!)n=dEo<@*Ydo)usJV6E`(|HVPB)-X_kx|M?YZWNOuFSw zMyx!I?RA#lB=*Qk9=1H%-NO?(l#+ZA;A|UeEJinvO+_V%B24mS&DUMX36)u2 z1#pT|iflvuio0$Sq_SUtmWv}y4}Kn{n#J{Gp|M1(M4aXazq!rI*4ET;DXvsowNXLi zK}H)pjrtU27~L2OKz9-QUF5XSa&TQ1)woB=Cq|c9^|qM*Sf7W_RJThw+wK1*uP;Is z{Y!XFBPYQCwV?w!xCkR65YtDg)=mWYU5 zi>1p+4v>aPh8OHO;M07$eJFXoGkJG@%5m{Q;n8{u;LR~#hMw>AtT8O1!<4>`miC<~ ziX>4P6isFhK}MCfT|ZdApSJNVdAU7Wxo-g)0tfze=M;G%xR}Co>P*W@Z+n5vORFxx z7#-Z=*;zm1<6WNMX(w~Js%K$w^40;t3hk^k8!|VJUsqA|kFbpLRgmJ%O@fw~0|A9K4Z6HJds z7JgFRz2<?!Q zSN;wpH#^U+62{lYvNb_}eN~X`&=~q>xX+%I9D1}AM~lpe#1d&Ek|Ld-OlvsDHIw3; z)4qkk^T>eJ`4m9ngQ4{6^e|!djD>OX^4)JMA_v`F$-W*e}B?j3b9@L_|6rLff~MW0FE%%5jrcf;@^8zQuXeY-mgtW%`oE zyJ+E=Wm+(jq4=^gXJ&4;qbQK?xqClgvGvG-kk3vN+g5JzX8&u4I;RF904%SZCiK;r znf8H`&bE)yB2149Cpv|1;Jm3+UgzdVPi-6;&T{nV6;4A1SjgmO{c^ta5Oqgh>ON;= zZ%B6TTp1^+ZRdfkpI9(f*1ulLnEaCXFD~1&&T!Z9WHo$aUP$(bvR9STg?CUJ>GRN4 z-L9T#*A8;zVGxJ+8K1jvnfOTv-2+6EEM9)Z8&_EmbYbd3T}V|E5HZrGK*dkB$qx4@ z-cWc^X{P=uY#diam69P{SB-5QV(kD@WS{$|mR?MN zW$pabyBqqAGy2{^zOr-9dilBijxU=t^LFpey*9T=;sB(E*rib_bZZ^tn*WFTav;wwgz6PA2j* zLf*LUbW+@qT#*!P~uXs>^K$E zu(g{bV#zbdy8%XuuDC>ArK6S5Ivm^((2}&aPT^@%+pXZ*;!vbZr^EbzmS@c#EPdN5eg znLuNQD5Htyp7^r92abL2++%qK9$q;pYl4*Gqgt!kX6f5k4Lj;kEZ{ zV&R8Ae0reRDuY|-Y*GazngeoDG4TaGjKxRDA66kMRFucb`^oMBjO=9Mswl?X<(kur zAWge+8<^la0J%=dgz@bM<1zHrkA848G+)iS4bn=niJ#P8b9R0)wzj0i@>=QcNy7OO z@r}(-WX#t0Xo1kKcdBf8VXVg5r@eDtOj^jsKPEH;u43P<^-`U!8L}GK*YR)pGcl^> zWJ2ny zkfKOy477@awaxA){~am8O5pjo_nmqO!CJ@VksaGL(_DRXDOJ2tF3&Dv#JvkuJ(#VA zTUxy+!T7JN=X>hVW~fI+G>6`KMjzew-n-Qp&ZbLoG2^URRLXHTdzo7$I# zE~#HDn7%`7$2Q{IG2vU{4n!q#%wXN;?}hK+yCKALNVU`a25kp3=Jqr~$@iL(s%P?9 zv2jh{kCC%tawdKA)gW@xUGg+IU^W3}++1ogFW0IKZWP0pk;9_XZ|`ikObSX*zZ*Tr zH>JI$%A-hlRlOort{l(vV|FoxlH+r%)KeHZc(Kw7Nw^uaj<4mh-j4hWgnP)Wal9Bi zHbHJmZ^lOfQk1Dw?1Q;P8CXPt0#=+npZnIcxtnn-Eim%z>e5192l|bNB23Wi!1$77 zuIcT6H^3RpZbIbn$Mo+J9E$V~V#vPVyZ}$%t}Ysd8r~a4v^PZ`zofe4doye^2?rI2nFwkJocqc z(gM_WrjEo9$M%xrA+#YX$pE(AaSxs|F|W7qq83hUVkuFPe3Uo&>?k48}-9% z#J~mOpnbaKEAr=7SY$J2*d3xg(=9)CFc&SyQq%fuYWDi5S?-*RvTLrvwp7W53Tp~d z5aPNofLD=API#@NC=m3vyPLNCncL5UJvwzD(Q68k-Wcs;;`1gxbdr3T_KYau?Y%n2rrcHQRRK&! za;5lO1pe{Z*|(cPPodd%fL9cw3SHIfPX_yJX*;uEzRpH{4_NM1#-?5=SFO7kH7t}} zc_P8JgrH_BiXlEL^ZDKL&rBQ)FKBhX%kNybhtW3W#_;eoSiBf~9gYLfh}XWjvvrE#d30djaH$h)HhOmv@vT~L%vqEOyWsIiYH=JXBz^m;XcG7R7%jtcqbZPvd%@K z5M;(w$nFpuCAw`)yP=)KZ~J>h2eq#vtzdSRGaADf^WatmyR^A%Pq|Gak=Tn1u-5r9U zJSFC+;hLr-7I37oHMx-GyVU}ldu?h*tF9`!R6Ia1 z`EDP(q~o`e&i60n?yI>|EYaewxe{Yuk@;||jQiWt5q7z!1a@#QRA0wd3d6=HAML7T^bJ@#<}2FB zO6tB&d`e>^91*8w{o?>pV{}aFdrEw1<@oFDVs<ogs#4iQK1Y=X zp1B!NsNe^Xe7MA1*BvZZ4f9Q2M1egJajV!dQQt!SQ7S4Bu=14Uc8a?^nGWjCd8`&>7d8K4ol&As@E5nX+06UI6!Pi9hxI8?Hd=Ia;`ow_a;{ zRzkYcBK+WWPyS_~x7TD0apt_qoYQJB>Oo_|b)2QJT{7@`CG>3r6e60BX^1FiuP^v`Z3(zZ42AAfKTIArq#MzX&~k zZ84(P?((yL4fdlM-YR-X3v4=`knX2xEPC}&JO-+UAbD3$*0h6BCP48SOW0g<e><{t$2W688V)Br$i~NoWXIBSIJMP`K+wWVW#!H*c^gM-d1&WIZ>tfNk3*RzgoFDV`7Oova?n@NlEq15PO zFSGVoVxHwsEC40;jMwpzgXPfZ1V6fwJ|5JY8{@)Eio|n)ojO% zW{r4|FWC39(@*M~r`_PyTY6M!IU707uyOHt%8B8Ecm4g2=yjHPx_EZ0qwScz%*i0f z*h`{e{CxOJ%iH6C{C)pX{Xu~_Jynb|$z;M$hWI=;Dd(xhRWmEY?D%=iB+XS5A4U{J zgh3=>p5$GrAUvjtLm;*On$~k4Q;@#IlJ`j=Z`aJOTKYd9UzI_~BBk zuFq4`U^>*^@EI`UsSVT2SP&>s&bE4gudsdT!VrxVAD8;0F3)1UX@FI;EiZWYiOHP0 zt#d?ob+);&aa`cxc-oz>y4}%&Cs;0SjYPk~nl2Ycsb6*l^?j)Ar%BAY?#T)s?-05X z6$A|Sqa_o*mp?CRT<6tzR7_qQdWAtd0xQp-k6}lz+~<}hYuX+Ze2tl1`~0pqGKKt^ z@hqOgR^3^Etx7dD%Iq@zduG&@Wh-kZx?~sr_I=CvJE=aaLlO@D=Cm2U4QSaVKQINR zk0IR!Ec&ZPvAUMi*X#I#)5&Qpg>IH5nr&(nO<&lfpDyZi4#voXBOKrYIYWA)r8%Kv z&-8?xVUObGZ(rJ%tLbyn%(`3oyGO{@9xlO( zl)Tg5drF#k0VplhPSW^9^9<1I#JsA9>G65^m}iS@V;KM7XR#KdrNr9+i;zY-<8M3A zJ!Q#jP*q{FKg?hA@ey>4+Vk0jIGlZdjY*3n>|^o$&QsMa zOf{xP7(T6VO0ypS-VBAc39T;l*<9@Ux{q zFHtNroVgLG8Mm`aBK6vduD<}8URS4>rv)Du$OPrsVnoh~jA)(kTHwTm3)k$2pNe~b&S!?sZ2KlF z`$)ekmixjlD|ANX1{D=wDwKn~aIkRvXxHf^XXD-J+J`Cn|pD!9AA6m`IVg&XQ z;LW_FSK2vXqBhCyHhs&FQk)au`RZdas`GYC;;2V$#AwXP^IQ+%ikK&M4kX&LS9(}{ zPc#SAq4oBz#ngqB7Kv@AnqC#Qp-ox7(9VATDT&l70mV8pNIsj`H;ndoaT-`tz9KhW9kdl3lZ0wYe;qLJw8i$&Dk-Ur*F@a^ zv!$zoX=@gGz`k8#tp^4sCs4s&8oJT^4S(K#rD`UejyM76>}N(?KAP`&!|W3R*Vj)o zN99vC5nA(6224{LgX<=UX0j>x(lnGZ>LqiKkUcP2&!ddUd0t1)M)OU9Bx1%Azck)yv}aJul~S4G}e!dKx>uT4GMLzSH4#4CC)>k;nwHJT=uc|M*4@ zqX_%0S{H#@^CgA?DI4x9X;f|uCn&AUZmH;BnrPtxAQqT#|9|hY4n}2w0O*{nzy}~EMvFVH2DNnqM_?~g^ z6KD(NY3C|tMZmymEV!Fixn^&gJ>YsOO3X8de(>4uSz?r??O}i=EO|Up-sTil>Q|3+ z|2Ep<>CRNYXKC^9ffbF-FdsJaLW4Es+e%`SH0R{C{OjLwoEV~b=ggPR{A`v&ZKIC# zSJ1{tApLCop%Xr;+lroiOure*t=lK<*$`oz8})HUbqq>kcN^lGQ14S8{Z#rKO`7^> zmIJ4#BGI2Jdank9N;xNcOP;>{tok(K3pTkI=qhthcU6g^v^px#Wyv)JN6Vm+Ph>?r zZgq`&2TDVK1Q_;bZml=<@>mCzJ*- zy}FN59m-Q}nm=Gt7@|?#WT>h~lYrCyp5;}v^tMs5!jjHeQ>M)m?HT4X6{j!z+bszJ z{$AD>*Eo4biOYRn2usv1ZlPnOL6>L8lK9qT7|_nmMKnH%Bk4mZ&KjKYPxSayDG_za zVa~WpC|iJ?R0AXgH!m2OowG$jA=iic zb*_kP9wdz@-W{^&)_dgF@| zHs}4?nVRIml?3`a7Oj}2qL8EU;SQx&(j9wmM6))w(Ghs0WV>M^i$@70M?FI)prANJ zFOt}Nk#WgpB4db6;Hr+*TRphi47B?RyuYlisafLXZPwy^>QYx#xpOa^HM!KF^47?P z(?Jy-O&mk2$97gSZ_poc>4%P@#-=6-G_zb(QlyA$bIXQj!Vg`;MVfskU+j>c6!r}{ z(=Ucx#MVOF=Oq7S>+9|Bsp))A;p3OwrAlfSw;9Op8|tJO?o64cwbH0N-m}phHhoZ4 zU(#WS!lzO@f+nJDc5+Ohj9{q41QEj{-Z4>nDD}F3mr79Y@U+>+x=pgb!@l&YtP(U&wgW;MB9Ad z0lWR~giXKF00w~@xEy@)uPk;qxx-OZ<%9CbN~z`B-vaA8xuc>4?_srSkQb5D?1Xx7 zZu#S~?!#tI#}n&C<4Bwxs(_s1FyG0DxwIg^Qo znqaEh9hoK`VtaF^AJKXg494vf8FEkvK+j0XGRg=#!^O`XG`YNDv7U+X)F%!)H8t5y zPnea>7tktZJran(u|#cAX?=fpo_y)mAr2(y+1@iG>=Q#Q`=q@5A(=v~z1{9Jl=O#` z&@Vo|f^_mYnWNyow>C7)3(sQ(ozcSjO9PNw8PT2lnIlAp4{MM>j2BWwZSA!8V}xg} zn6Yp;-3|&EC3nGzJAg!hXAhTFDf0 zy;hCT`W@9oxk?P5BhQvrN{}tYgnHglS!iD~hylDqPfYgJE^b%CCbZb}s98SW?qj>w z&?(7y6vj=SZ)8NoF6Nh&oAVEVh&AYY9OqZVwrmZ;stdGv%dn;mIM`!ZD^v{U`5&L& z1|amgaO9#FNb|usoO*LL?a|_$@|lLI(5mtaQ)+f-kWKSO8IQ!w?@PZL$>gpKXkVoE z)+Nso<*S%Ah%c-yA@36UlyX<#c4s6_w6B#94c!&kt?n;%(BG+lYWh`JCoB45S} zgMz^hfB!@>31EeeLG>YhA4epC0p*Co(bQ+gQY}Q!FFbO2%PbJoGIHQXV5H-571An# zG1qk}?Ka&uJa^P4U6?DxK&YWW`DH*pDF8GSwLM>jl&}^uT8&=l*)SCCws#5^>;oZZ z@Uiu+7=O)ru@pCzMS0Z3wi}cIY*47YKF*>_;=@8#{Hlp7v=Q+gt0@ZmvuxeyZeJU| zWeaLZ#G6Dt@RuU0h7}u=D^`>otH#gS$ZPo)QuOD!mEeNcMq-2a;RQc>8SSxQyfEYsz{cVrSLV2x6==rO*f?*7ZAD9 zZ%?Vnwvw3&q`3RUdKlBDFph2=GTmQaFdGrpaMwk*f4!&A40Y%TXnn@7&ak2UVFvLf z36{M!erq;UuZBRt$}6X0*^@RFq7B9!u}?luAD=SCg~woz&yp7ojF(3I;KA47r$Vx( zNPDN|iJJJv$#v_5f={9^?4TgFX2G-NcAqWL_S5Ilz%OhcS?Lgx1hVE9cC|gD`C|d}B zS)>OaQmZZVS!b!`T+~*a7H?Io+(AZ8$NW$$xLY1iPo(^d*zKSSs(tt#J*xw}_&zNI zQZgB|8Uy?a9*9A;|Jt)*T#9V3%!A(cddwK;cK+crsTA}^9;#<*(nUKMfx(526k2i> zie&HT-MwtGQOheb+STetgSRpjY=UAFP2MX|OE0R}{q;=?h|1m%Z0271EpQ8{9gxrs z8Z5}4#E33j*Z1pc-3r=&(mu}q8E(za8p9^SR|s<{L3j!^;`mHjb$;uDT@H#NXkiv- zqO6Gy=6nX})rY<-db)UQY&Cm6^=x-5p>8B)W3lowy`KeHrgC^}&DQ8>n?->uKy%+! z8!JO4ajaLP3zcCW0m(O3XszUGxGSiQLv&2pX}maePfb`X_K^=uFIRNQvsu)E`Ou;bsCd!lyiLe<=&iCI;W*8en*-od)I6V z35jG|MzlE9dJ?DNQO|T>Ey5GFPIRg1- zn8UbIp;jh(>PF43pL2PS$~+UcT}-i4gp5whW8yfsw)1>!N_3pZHg9|x&a?Ltx;HiM zcLBQBccGN??$&bAe8oe_<*D;j$pJQo5G247Y7%;E(M9H?Zv1i+VdxZ}3Qr9uZmUU1 zzLm&X14%Y>0_m{fUZzU9H2 zWwyPnA$_@T{@WU->RmxRufvc-gE9d0oo`3Xv@dJgMZ{AJ3uL2eG&X3tULZML`o37| zeE-pGL;`ICnQ-SQ&nK1uVUp9}+Aoz)&Rhad@KY4=(VJnO55DU^i^|b&Gn$=FQ`U3&H(Hh z2-Po#Ea9uVO#~f=&P0V7%Afg99@lj|?bWdN9*-m>tV;X5z^}VgFG75snDaFQx`BM* zJFcd|C2ka;3;3BhW8Gzr^1|TEz@azo0xwdBQdGzMst9=GwOd3EdP{=^J@bM4qt%om zrhVth;nWfj)67$Dx>W&g=#i{(v^7}8n@mATI#J1PeDmBcnbvZA{jZ*7&8U+7>}_s^;8`R|n5)fZ#rjo4@T=0=;p$?CbWAY?J-jBJ*|qxbBNAqS6c+E1F(lekXz5i_Rp>e8sXcxVb9kQHHT-YB{t6W;@v)n^lq z3H!X&zHEeN+67 zZ3$a#c4c6Cym~cJi?>&QmK4(kNe{j%d6gU2Vi|6r{)ph6fbV&>oqdyMOOhS=$C8Mbm;#uqKLTdPqqNNOgA z!4Mqdcfm;cy-MUkK-z;HSeZz!Q@?oKA)Y+UO@xO&`Hdo+_**!>38Kw-5eE^aaWl@V z*TCgcrKy<^T8vkScyzsq=Cp~$Hg+NiBA=11?9YqY)|whC_gT{0{jlm|hbPc#9GEL( zaoXtXi}&-_U}(Ma%1>NNn;x}JIiwbz`zgQ(l^eAGgOrJ=<4HsZVD+%AM3T+Pdb4OwK z6yFLqpljm^ta8I+?QbQ@O-Ud8}~2`hvuj$vzk=+i}1m0mt~?ub={P%lUg< zmj~HB%kFPMDu$uqZ}G%w)^h?@!Cc}&9bm$j_o3-#wY+Zv&EvR+tE?;zMPcf|yes11 zL{pu;Q+cf^wE^Ua=jtl%QZ{N{b+MgC_(>lUh|6sqdtF=F6m*{rhrn2^F9|(iYWch> zf$3;?rx3`8InU^T{9$mpyLT4r6N^g)x4!tCjWW3imW=fM9C_}V3X$1Wxco8 z(y^v<-6VTspm+pm!bbP6y-H9q!)D=%7KU1A=vH&T73eV8YR{D(=6Z8&hG{OL=s@3L z=wGy6i`S0o!($8^I2*Sq)nLh%yTR9f5OSnzp2WhQEGC7c8k*r3s8O_L?Hnwhk z0cb^E`uC9DboT3)D5c$M%uj!5_5dhMs-ZO zT1%@`ZFlPVJj{j_ke*SP%Mw(iW1D)-n=DCv$>+vg%5~RUk0~ZyEu!FrI9^R>HHIuZ zTjrSJhw5emLdQ?L+xb`VEXWd1K!v#FKO-lpd2gaSK=b z{^PViz6X^_$}=4Nru?1SXD(5;W3*IEl6h_SrE$riwJA0!;&zT9h56RTW+)J(r5+E2)Fs$8R{e@Wp>}_OLT8@r5fe;~6lnxy|*W zJl#(o`quoei8h6t$zBjOLgrRRlz>(2^r?<)pxyfvWM8Y0cOfGqmes??rsw=OB7?Ui`f2aobb5AI^fSrO*0%*N@u%6AiE>--$7wEKRz_<~Pl-`u=e|=o-PgBn zSM43}R=RVtCEv9?V)zgsyz1DzXX3+kxUeDSpY%f^vx&mPW!K+auY5bu#uKr;!hu;I zp)>^FH+3|fv#eZJIW-b|>x>I6$1s%6(E(F(mi|JGh~-MwHMV5Jc*-RG4LY~l%P+K( zaAL(UU(Y*Nn{oF}xr$(ea>e8-glj~f%?DUo9U|dR-z9Pp*oid_1!kYJMZeYD@Wu&!O+3nU`frWkjxK0WT4@-xEsAuJM%Cn?W4D_IcS z>?KuEe{OU0QW4X>cNB7RtThvt9}EnjY2hy#xR-D<`pG`7efTX1TG^2=w7H03^k8ak z+k><{)m2E{1>_{MNG~SM7v5~|!h~)NHh!zxM)^f)s{VO<_VYq-^nJ=5CM8bv-MB$H z0qjU5h67_25e<6v=_kYqQgtahS;28%@2H6mW;&9qY~8%4boMEACxN;{i- z6!C?BI|ZFOf}sps=gA@`wU?u!_K<5ct(0&m_l5Z@*~kDEDL?f|OaFVtn66paOWkTS zn+9B^4O?PC(6hlG0^aceM7R9YMj@#ySNA69)x~d#rQI7^M7-LYxb7HnR1UmJ>$_BX z7GSkl*?L3FG%wc`Cj0FDjL#@rrd{5*ofubuj?XL?fnnMJn02etuUUeJbOKYSo3 zD=glN=Rw?6&$fKsgBwlHHC;$PMm8qWSw?qAvpJTsu0bFdss2<5Y!H<-vLj1KE0 zc)GrYJ#jnMQ99*ZLfnI_uapx^x&7plaikAKQ}iCp7~bOYQE)ViV(KFZYTdTy{|Qqs ztk7cBlYeBvaU2~cS}c&=R;>2d%rnPhJ+piLLw{U7c$Yq5qF2Lt`Vf_Xb$RY36s{Go zTQnO(h%Z0kk~XEDl4TyoNnz$LPy2e0fD4N}QeJV4ety|5pnL@X>Hb`xSPXIX;xgthi--UyTu4;(Sc_iGsmhaeK5=VYbIki==I;qUl9Ruf5l zjn}<>F#}ZPsRR0$M!}h+1(piHa}kKhW3*tkAG{K@ z2lWj=CaUYf(iC){ky^AXHj47P_E?ZDJ1F5p#Dv=qBJp7x`gTFWl4LyW+)kF-x5 zsk9eKCbfmXUMPQyLUoG1ly<4)*txmWL4Xvp(V~S6V$^djASBc#FU&&fs@gk{$~oXR zbgUUfJX>5zY)XSNPl6_rxFfzIpO6}`%qsbeL$Kj7dDfF38lsJj!m-b6N(otDDum^$ z9R+pY-*Dqcsirudr*myJJq}V?r)XE>X7zvZ)Qpc2qrbM}Tz9$C;_pmr2}t@niQ^;3|v67;%6kCRdlEkV1(%~DZKj1s-f zY1G95TQp*_GXO?{gP8)KVtJ?#kTkN`rLWBKu+Jbjia{7-6pj9!_qDoW8UCOl*{l$< zLi|;zDX>uPK*z`-JQrVxEcTC%->3|+roII`Gn#O*%#s-$6~fcuZp~j5TI&6{JkE$o zP>OKF{h}z8kZ|b`I*1mR{Ld<{X`&OhfR86>L^G?*uTUzB3vUNsbXnf)tNVg~b_{|* z*pBrn^e9VAy17nz>0eqPCM z{d8Hue4Kn=zB{GQ73>Ythbmyh7dH9Bl!I}x3XnbaDxbq(lQ%~42noW#k#hq63ORpf zg7qBkwF&f~a8zt`BHwR98-N`Kv&(ON2;Sr6Iw9IyL1uUt2Wjn*;(Rng3(mfe|Jh3| zYa-~6(|6nux*|M(FkEeX+s&d(rLx$dxIJT;?CwXtL?NkOYp?5mQ=O(g&oYix^dp|y z{(t8pylX2gPuP|t0z8i6t!OQ@R+fV@&*v0ebCUK6u;#VfPd-+X^SBNN1V++jiIX-7~A^>|A7Nsat)=|5lT zZlpF#HHF_N{uW#%Xq=4r*sSxrM+LNEzW*gzq~tq#5g6tX%w)TuPb$cH1Befg=}Rio zd>y%o>GNsYbHCa;E7s<^UeG)fB?aOueeC*o08rMVoC)J9KVb`T<;H53K~Ld;F!!8g zEml#4ayN0q_vUqAC&r7o@HQYL!Yh!mrnf@V)>4;@@-o({ZGxz?OB!Mr@XF4=tV`wOB6Yu5)0XcpHhb`Wu)u>R8B3U@^p8hG*?MqLM_U@j6%3hJ}oHDn~Kg*MQjac*Skjo zr5zGFl91O^77^{&&?5GbJ!?Oebi-3@Yp=CS0B|pz!Ryq%TrP_dKavO>I)5(tE(GwU zK4-z8-zVK=y^MhJ0455mooAJEjFF?o8w6R)e2(fh*To_>dny4kmag74nAg z9*FF@4J(zkp%^$e)~T4X?^o%VVTGw2GoYhfu6>eQji`}zHSx9r&x&1Z7=lnCvOv0) zVm6kj_U35C(lgaJSsz$;t1QcYl}rV25O8kdX#v(tFS;GAobsUOtZ+(}qr~;r%a!+y zp&r@!jW)hWX+Ewn%^Uta-^72kYP#pva%bJ&3NfDeT#=8;_U2bhRv{sc1pXLg_f+C7 zt{?#J6I+*FHZTT2c&FdshwOp4V^;u=33CwCUwjavQ>hJcI(ZLk3q98Q WBQ98fR zupiT7@qt2h3N!yGHA6RkbJ4&C*uJmt8|qHT#cM|EU(joX>LX6&%Y;W|!YS~C-;F!U zV2m_$E5@icFIst&s}a~%0L8kpa+`_Y;N!GXc zK(k+?LAZi;r$LYmo&3P}|AuV)G>@ykysH>{KZ>p(B3Dl+b0p7^TDY<>7)Y3&fOTia zzM`FK%beH^YgCetjHEC;Yf+tkK9}y2?4SHf|K!+0$$8w8GXz4sE2Pdud3e4Y+_L?w4HEw*Icnf0ZAZcv3PeSK@4r`(;YkXYiWL+U zCi@(ACoSh;7JNo=c<~F_xk;o&D$%|!d7>!{HEPVg1y-Zxiiqm0Lh)w8WAl0^NrHO` z_k3I1xD&_jV)iAri~IBPWwFs6ei_Oh9WlLZ;mZ;?94uh+_|1s?iqk7}7G?M!=4a7qeUDjLNPo1>WYrlqG3bnHaJzV5YMXw^&NWW75T%9^1{a%UG7%;`w4G5aAnzl4&EUI_iJ}2L z2(5o~>uCvw<_U0OkSk15J2dB*rvj3R#>740Cm6=)?GvQAhr~)BvRi54A-gpz**Ixl zWSAYz+qs?Ksf{5xS}A!gmy(p5I9$n6^5@8Or(HwSF$o(;l)-kSF0iQc(#2}2T~FA7 zJJoLwLAnffl@`3qAEPKro|imS6fgyrl6`1Um6GBl7cR~C=?$4;yh0~6X);$$l^<#j z?)vYqcN$yBpmc!5B&A!$Jpa3HPTmi1kF^H1fcB*4(=2#?lqJG_ob5kROj%-uO^f5bn+Ta`T^2~>Y7~U0*0>^|6=pgRr@X@cQ|)F!DJwZYEzz?1kYTu zIGxYd1oBuhb#vwPVr9Eckd|YUMYnFe(%>lvAv7xAb^liXzzr}h&2@Iq0TRjZ;|@tf z$Pow~8&riicelDEo^XWr#n;a~VMg?$_=9BHpp*JA(nu3M#1IAMY#Ua=k>-Vt&85@W zW;Qj~maUyNNCyzzm;Nb$Sc+$gD|JQD%|7@5rbQB= z-y@Fj)G}g@ zQW?GEWsTa&gzDR3`P+syapc-`(m*7_Nf#wTbqPkFQzhgiw26~&aB=KBMF4LZhUj_I zSzur%Q4Ldr;unnpYd|U(xfCRR0G0W-`33ElIA?&d5)C;CldG#e7^7+~xx0(3F9=2g z_`2E4bx-V%KT0M)NG3cd4#pYhJPjU^c+dAaX9`u$Yaht$Ex0F@uj?T-L`VTQh+?}R z@jriPFz8$-l-)qih|hvW}TMPNT2~LQ*fU)Bg?rtn+A)c@rUf9;b|`Zh}_D@uJOFBihb{ZPIdedvzHo|HED zyDRRt2L@=)3RSOBuP&Onjl+PR{X5J0KzD#t?aprG)##8Id^8Orr@g9Xx6%8c$S)f) zS!S6jOQPSj%8k&AwXxd$Ot=t9!G@>l9H?9K&2mtL%DyVmOWI|*N5KdAJ&(J=3Iap< z${4wZjcd0FW0ET{))~6~Z(|@M#bSZ4qmy>{IPN!!(Z<&)ZS<~r;Mp>;+yZfA?<%8= z)kFJ%+DO=h@K!%lqKjFgsi0J71@&5Bvf8d(sR@WskDQKC3I0E9i}<%HUX7B5=5rxt zme>!y)2Sx(@6+w?K@X;V69|C(Fp zUq@pf)lGsiJityHA~X3e=tQR60hi~OsW#2g3|PB0!8pgo_(6fG?`I@#fn7^ASa()R z2lq~lBo6=ASKdcU@6^U>Jy6S~x7%NM?ed{_X0wl7inO^6ppf@ptT7%$qI$!nMr+2t zI{FB>vgX|40TEVnuYYaqj-${%$A(fA``s^^~hiW=#Mmu&jqdjubX`&cVq#=p&J z7<+@9vb-4lteAn@8A^hJzawgj8Xx0)Ok9>wR|T@to3I;jF+76Aol#-|9lCU28PPHA zil{gyT9;tYh!_TXKJvdrx(hc%SBBt6@8GQR*0${ zOF!g1*78s^zT{C@?2gGzgJS}I4Ne%*JZg8@*?SIEt!pjJ4tsajsY3U^v+`potlHt! z-rgK;gAh~4}8s!htKZN{fM%HM*6h5hl%1bk{8WUIwjR9Nr#sIXCw zMVr9P>MvX7!F+2k_1V^E9NSGEyxi^M5$oH;Z~jc>l2LT~XlK2Lg8Q}KiKF0~4muN2 z%&E(I_3Ze!Do$dvElWP>0zaw&evUtTob! z-Vla6oUbn!qDx77E`xiL;f>2Fj+LcT6)KdVpxP=WiMVgFq5qwnpy)_1F4-cXfLwZI z0>SJI;NE@NJ)Hv#+!Q5tFbMT?TCdZ-y1t?BZeieoQ9M~y_lIQ-I2r}exCYYuM=?v5 zE^&M~DBjd%JKfqg-{KP*rgek8mDdPz(UB~MHO0}0v@OzK73FWxx5(N_0apNfZGu6g z|D(v`u?6BY_WB>BHVRhcrqSMgzZLnZvX~V?DbzoyxFC!`r5RS6On5sdhlGhR-KoW9 z#fdZXyQ!4A*~N3v6AyumukQKpYaz@9+8p6IFOMnJRRe|6_k^}r1?_^N?RD=)Q-3`( zZjt_9p@chxGy~p}f2e@XtPbq2104nD@{`bHO8#OqSTZo6*fHWLTM)}XCHsuG0h(+J z@KmMxI+x38xS!pU4pFn+ip$Amp_Bg)3EGgrc^q_fA{dRS4lbYH&V1@6Ec*KLVP#qV zc!t8|!n2w18j`;NfdLT}QP@dXX|k3ezP|ze2^_zHB;SuiKG)$NVf$@9`?xcVjGCI* zU+e3ESMxqOocji#bcdpjpp;^TW_#o^)IpUQFAS?BVC5o@0&`-Uml&XyR;_4z3ki7{ z6nd}(3W$Q`-(Y92&gJb5@>vv<@Ez+AZ7cgEFM=vgM~XaHd)l5qQW%)f-7p}-44Ic9 zq~hJGa{pis*hn6F*qmMpI#h&0rQsLI09*Tl7VW!*+!6*d4Ujlhy#7+|NDJ~&M`6|H z3e6|%HYrPv=rLw?n;Ur%)W)XgXs9cx#=8+u_yff+R8=E0#6ht zEc5?+@|Wyux}ard^_hq-LcvP@`^)L@@F{Aaugne5P9&>w5svO3fKhc_Kbjie0aJ9< zrpHG*qA`i1Tsh9<0xVZX#eKRW2q>BneXmH{mz$_H+ohgQQ+TifgY=q$wIMF!4C1>3 ze`1TA&Cp(-Kw7OfPj)i3z%zz8ws`mdmJ!M4s#&EDDD}=Yf>i`luUj}bnBY6dRj6Ds z@9F=4dWBH~v2VUO=~Wq0esM zDk+3V!sXgqNC81^Iww>v;8;8VYb@yvrrMFVflXLO02St@_TAH{1ae+D#OCOw*boO@ z#uWPXP2fzK%Ly(wwEo3f`4@XFGNo|wjSgSMR^z|he17>*1M4NhfIrVb*x`YFBEMyCU|2an&@6?0?RSIwb zse+{BwL9<}54NNCb#D4bF8T)LVW%v0on=^*Tf4^r8Kpaz|Prd#xbv?1S1weG1|+Dm-2aRGUnx8*N1pe0(qg}M*t z*F(>neSCUfv{lk{OS)<`Y4^`gttEYV%1TpYUR`U7UYu+Y28>VwIkQ(uw|cj(_c3f+-&&J1=SE2eBj7p(aA#DK$V<9pYKyxnL?EwJJPr#u-WTS?5?VC6Ee zR{j1Ey?@FbE?k&M}=SACt)r}Kw{b7e!M{ysEIcDG7m3gHl zcfshYC3s^zliS!L5I26&h`JOk6I2zKH#>IresqhteQnQc43auf`Ciu8fLA&9_BcUS zla2O|rLojZm%cGZT^#QoQg#iWmrF}lywo5I{vq2iXM95J296TH_mcR7kryGlL~!KD zs%F_K+$C;P_Xq|Z*3})oB;8yb$I*Fj&GL%mna!b4ttUiDl)#|Wq&_;8*t<#IrG09t ztrpKvvmXK1!~g88RXJ!>)W>rkZ7t`qM9O z5)JqOfbJ~uM^ZjD2}2R|PffL%?A}es(dK?Rkpf(sY)m8jc#{e~ul8DX)}Gf6TDTCa z8lTkPnij+C25gO=b-8EtE!C*F;ZnE*i+#)zp&s_7>L$(yd4a}(wNs|IPQjk zv$&Wl_T5ERQ7GgH8I&f`UnH&4w%xRkL4lfOy5X1lBaZ%&w$L2>72!CrAu9GMHK(QK zMYZbgm4}wNtT=hCWhqi&Z2kwoB2$gS$L_W1?ni5Q5iP(JD#DD-h&j1Fldt9y<|tk5HA`2;Le#`*0V(0_&h2zKurXS7QyzXraX3pD5!Jm9&CAGQZ6^{2Jo(B$7tF5z z2NlorI;5cdrwZ2&n{Pq~uZP4nt!q)xXU{5MXp*Q@)rGEtuJ*g3|v5O$RlY{r|6tlQeB`qlYAu|@J6Wzbk~&@y_ATjX0YOt zQh&mACyt#=3{4G-TxRqz4HMhivR?$ueYl67JeCqH&*EHseSZpTX4bmT-z7n?%#Fyq zU1p4=S@62d3hJ3d8rdr8#>r;_Brd}k`^m6c4w*@X^5}>n$|~g{<0(!bR7@tn=@Cz2 z1{-TRrB92~ySz0q_k^cOeF`G3S^1pt16d&!-#~-rtA}gzt-wmBHr`9itA{=zHbj=I zV%BA`_K<4~UO#nQ4A2sKbL<&GZcew9eo&67E_y8hAVgc%+c+v*#wOYRJaYO#DsdYn zP=;SLbDHfKaC7|z2P*+iBm8tgJ>AfMp1COr6{W#1vnHED_h~Pf-|Ui*J_7poiBQzD z_DrD|+Ao8stC8)M`-M*2kOie8~CtXS;<9mlEd@X z83@LerZvV#i^x}R=F7T0f>HT3AJeZ9hMjhJl(TykXGeaDGrJXR{}$jc^lF)vR>edp z^qX}h>UtiDK>SjVk(lAgx#)WDIYw%3l5f(hS?|VHdxtoY=mOxGq%2L#dSa)b>Z+oJq47iaEiB*okaDhOX5@+RI4Z?~-qEu)(u(xy z6JDq|HPYqV=Rzg!Jy1qdqCP&sq*ipA&h0v* zvRq=>zJfT`E7<-^T1|}lSFyRv7&=oAzxK8`Ux>Fi(U!{#acL>^yXh$1v|AaJ$T}l23indoKMdr>_Wp4hM3f1%0>7xEuK{( zoC*myWBU1v5sCy@pop~dc^yFF;tx7o>VYd*fD=3>Dt+9_*c_xinCh2!&$+?2LHy)R zx=Aao^SIFKRtKLJQNnhx={6oX4{nr>!YhO$sdYY#_`Pm>-E=zU70=$=Q@t~2QSi}L z{#K+F{;1?SFG$rYU-p~vu(?Rytqk?{8nR9SnwSD3Z9O`_&`6*8-cqwQE|sEz7QSjY zivP|-)i%xI=>Bk01L^zfOCFe)JsJAv(IOnGDAWy{^ z#B3qAoqWQl+zq>!>E8N`%&l${MzA^l1M$t=JdriBr)}vKLvyt15%qL42whw1kNYeW zBdsmht-_pP{CdQ@l?-0_>7~{I$Mf#Zv$@^VKpVN$J$OOHqqvxZ-0xGl=+L*D9298a z;-M}JlHr=+W3_U$N{?jf_wk*N>D%AY(=(%GrXvZYQ*-mnP&B*N>z1hzNMv!CnReM~ z;o6GVDRpr`l7#ZS($(a?8?lAV%o)EaT zA9S_JvY1BDPNHe;C&FUKn6xaxm1Ul8$t_^UwI1~X@^jag+v>-Cx(a%O^qsXDqEa`u zGi)qxd_!;GX?#c{7wiKHs0oH^3A=hOVLzU$iYn`r8n0)tWz)OwITWI9Yvnh@8?Z7~ z8iji!Z;juu6GZG70gM{Q>57P`ruS?E3fAp}ZiS*j4vje_AvmXnsPWa&zz~OF3wIskKOhmlD@e zk(OqSA*i1W987GGOvvwa0I0nJn=Jzk1Mrd`AXE0(oNsbTzYm}u=9ttJqc|fDs)fyV z@aMU|cvi_2FVOm+wg;6Ort_=T$n5fMztfVc)oM- z;m{d(uT*o<0Y_fGa_EQhr5J;osv2qSOs_wo)2V;)wU zSdkZPzrfTY;<@CfRa%04Rg`(5s6_>R|{lv zcXHnC&e}kdjoUW;XpMSfP9If-oM!v*!akgqa)qo@D=B8MYr(nJTo@x$RR{ec>E5#1Hm7y!?>Q zzR#`;#`LyjgF6FX@*=QStuGg`-LDfL$qcj#J!cd4l2UPcah7AAYVH69p48z2$JIkm63{eglr zVRZXUW#7+z2N^^?dZC<6ghbnh?LbAu7%rfRWNh^v0b9SBuo!E8bI+BPciM4UI&FLC7DI zNI7vQFRqGtUrC!HQ2YYpy(Ldm|wk+pRUe-#&aAa7YkhP zP6-utC7?y#7aPge8?#qPAWx>&Jz3prps;06liqNN;4DKge$DE0z3B|slU>IPs{CMw z$=Iupmz5SCXcHzRHUhO-a#0o? z=_OB>s10}bdWm^fAGSTLNS$}xK81X~H-i*6n+NbWaVxU8KZ&)!w}0S6*e{0H=!Xpc zp+5SC}`IPt$*I-%bZ8Rd9- zu^$FafV&rGZ;v_UUu@Xdud*moGY~B`zC*!OnXQoSaNJx6Z$H5{p`UeGs8+5Df^l!= zk~^<0_?oQqcEaM}DEy>6?KRChMehb`DSLQ>$gE4u2JJ~rjnS)RKU|J`s=}_4JRdMJ z-D6U{ln<%I?skqP_xEeiiko{q^U3dv5Th;MWU78&-8CUN>o&KtVRt3*iX zq?Cf~eP3)CMayRYh9c(<^#M5 z%)&|J1r<13ndb&yAaC<|&Ghd9w(er)I7n~bk2&3cbcV=AZ7UVC8<{KaqN9%U=vp^# zKYTv02W84}$h;9Q^%#2Cl}kfkHAeH0)@1KQxPj9S8jj?p z4y|%0GP4estwRmE&Ybe#sSKOmFn}l}(SOhXP_mOLCYf~M?HH^bQxR!q1J5mprGn^D zdMvu(D~RF^j~n8~!ney~gDiI>q(MaQ;;tZAAGH5iq4v7(wn^d78@Jgj*`@7M2AFXQ zN!@`fw9l{5Isv(K$G5E|;fDz`(i;k~4O7&mM`5!W0GFPvS;J<r#vc|m45TRI4ZqG=-8={v%t!Vqtt7JL+_4SJ|&=2foZiw z{yT7%sr|w5`uj>7_xOI&R^-iSfMp!;>J$<31bUT&UgRpw zg|Ts0I7fVce(zT26{^rq@?K_B;#30FIfQjK zMbI!6m^fkFYEM!qa_31LL>K6?XG+nx+Bf$|9{FSUOJ_#Q!d|m10V0((7;z-Y%uteB zs${ct$`Vx*BiK#ya%g(Vx~*Oo4W1)!qsCnoaLs2gI$ALgX){(AWXPzEwfiXTY8FLW z553BJn+i=PQJKK-k z#xI5jT(`b!%_@AH+Aaifx(r9;cHb`M#;#Q$1u zA{pCS!0u2no+yKpZ8wb6nEPQD#WM`TQCxtO6#uX$$x-rZ;pH9OqzK)*hQAWlM`A%1 zLvL^vdp78@t8|no&91*(bb4N5+CGh(0uzSoE|6!>#ht;$S)+6z_uLL99rQZ7&JE22 z{SlIza5wvN6tfM{;P1~OxF-0<%@_dxl37_xc)+6n*7=4Mxau;v~A4Yt=)jX__Du~Y5zkB z{U@3B7iskGWZJ)zM`2(f_b;p`VoC(=^(Vzu1JOkQIe%vQ_o$z)|1vx!xPijL|H&1| zCFAWbtLcuwaw0gT5$Z z-anK1U+2GTt7c+l;RfVVv@v%>fKm|{*Ply5&{3tFJP_>DUrGKs3j!hg*N9wF2&m{! z0xOHMiMzACle@i*DbN$l$8IDZXqXfd|05T~ zejt+hr-s-fCYJwp0x?=o%3pH(g5o}&QAeV-d q)6YZw>kXE7v~&XgI@G`3VK;XZSNC7X2r-fXA2$Xgql_vH<9`5GBHzsb literal 0 HcmV?d00001 diff --git a/Mathematics/5th/Introduction_to_control_theory/Introduction_to_control_theory.tex b/Mathematics/5th/Introduction_to_control_theory/Introduction_to_control_theory.tex new file mode 100644 index 0000000..c200c11 --- /dev/null +++ b/Mathematics/5th/Introduction_to_control_theory/Introduction_to_control_theory.tex @@ -0,0 +1,113 @@ +\documentclass[../../../main_math.tex]{subfiles} + +\begin{document} +\changecolor{ICT} +\begin{multicols}{2}[\section{Introduction to control theory}] + \subsection{Control theory in ODEs} + \subsubsection{Stability} + \begin{definition} + A function $\alpha: \RR_{\geq 0} \to \RR_{\geq 0}$ is said to be of \emph{class $\mathcal{K}$} if it is continuous, strictly increasing and $\alpha(0) = 0$. If, moreover, $\displaystyle \lim_{s \to \infty} \alpha(s) = \infty$, then $\alpha$ is said to be of \emph{class $\mathcal{K}^\infty$}. + \end{definition} + \begin{definition} + A function $\beta: \RR_{\geq 0} \times \RR_{\geq 0} \to \RR_{\geq 0}$ is said to be of \emph{class $\mathcal{KL}$} if, for each fixed $t \geq 0$, the function $\beta(\cdot, t)$ is of class $\mathcal{K}$ and, for each fixed $s \geq 0$, the function $\beta(s, \cdot)$ is decreasing and $\displaystyle \lim_{t \to \infty} \beta(s, t) = 0$. + \end{definition} + \begin{remark} + An example of a function class $\mathcal{K}$ not in $\mathcal{K}^\infty$ is for example $\alpha(s)=\arctan(s)$. Examples of functions of class $\mathcal{KL}$ are for instance $\beta(s, t) = s\exp{-t}$ or $\beta(s, t) = \arctan(s/(t+1))$. + \end{remark} + \begin{definition} + Let $E\subseteq \RR^n$ be a neighbourhood of the origin and $V: E \to \RR_{\geq 0}$ be a function. We say that $V$ is \emph{positive definite} on $E$ if $\{V=0\} = \{0\}$. We say that $V$ is \emph{negative definite} on $E$ if $-V$ is positive definite on $E$. + \end{definition} + \begin{lemma} + Let $E\subseteq \RR^n$ be a neighbourhood of the origin and $V: E \to \RR_{\geq 0}$ be positive definite on $E$. Then, for any compact set $K \subseteq E$ with $0\in \Int K$, there exists $\alpha \in \mathcal{K}$ such that $\alpha(\norm{\vf{x}}) \leq V(\vf{x})$ for all $\vf{x} \in K$. + \end{lemma} + \begin{remark} + If $V$ is continuous, then it is uniformly continuous on compact sets, and so we have: + $$ + \abs{V(\vf{x}) - V(\vf{y})} \leq \omega(\norm{\vf{x}-\vf{y}}) + $$ + where $\omega$ is a modulus of continuity of $V$. Then, we can find $\alpha_1 \in \mathcal{K}$ such that $\alpha_1\geq \omega$ and so we have an upper bound for $V(x)\leq \alpha_1(\norm{\vf{x}})$. + \end{remark} + \begin{definition} + Let $E\subseteq \RR^n$ be a neighbourhood of the origin. We defined the \emph{penalized norm} on $E$ as the function: + $$ + \function{\omega_E}{E}{\RR_{\geq 0}}{\vf{x}}{\norm{\vf{x}}\left(1+\frac{1}{d(\vf{x}, \Fr{E})}\right)} + $$ + \end{definition} + From now on, we will consider that the system + \begin{equation}\label{ICT:ode} + \begin{cases} + \dot{\vf{x}} = \vf{f}(\vf{x}) \\ + \vf{x}(0) = \vf{x}_0 + \end{cases} + \end{equation} + has an equilibrium point at the origin. We will denote by $\vf{X}(\vf{x}_0, t)$ a solution of the system with initial condition $\vf{X}(\vf{x}_0, 0) = \vf{x}_0\in \mathcal{O}\subseteq \RR^n$. + \begin{definition} + The equilibrium $\vf{X}(0, t)=0$ of \mcref{ICT:ode} is said to be: + \begin{itemize} + \item \emph{stable} if $\exists\mu>0$ and $\alpha\in\mathcal{K}$ such that $\forall\norm{\vf{x}_0}<\mu$ any solution $\vf{X}(\vf{x}_0, \cdot)$ exists for all $t\geq 0$ and satisfies: + $$ + \norm{\vf{X}(\vf{x}_0, t)}\leq \alpha(\norm{\vf{x}_0})\quad\forall t\geq 0 + $$ + \item \emph{attractive} if $\exists\mu>0$ such that $\forall\norm{\vf{x}_0}<\mu$ any solution $\vf{X}(\vf{x}_0, \cdot)$ exists for all $t\geq 0$ and satisfies: + $$ + \lim_{t\to\infty}\norm{\vf{X}(\vf{x}_0, t)}=0 + $$ + \item \emph{asymptotically stable} if $\exists \mu>0$ and $\beta\in \mathcal{KL}$ such that $\forall\norm{\vf{x}_0}<\mu$ any solution $\vf{X}(\vf{x}_0, \cdot)$ exists for all $t\geq 0$ and satisfies: + $$ + \norm{\vf{X}(\vf{x}_0, t)}\leq \beta(\norm{\vf{x}_0}, t)\quad\forall t\geq 0 + $$ + \item \emph{exponentially stable} if $\exists k,\lambda,\mu>0$ such that $\forall\norm{\vf{x}_0}<\mu$ any solution $\vf{X}(\vf{x}_0, \cdot)$ exists for all $t\geq 0$ and satisfies: + $$ + \norm{\vf{X}(\vf{x}_0, t)}\leq k\norm{\vf{x}_0} \exp{-\lambda t}\quad\forall t\geq 0 + $$ + \end{itemize} + Moreover, in the last two cases, if $\mu$ can be picked as large as we want, then the equilibrium is said to be \emph{globally stable}. + \end{definition} + \begin{remark} + Note that exponential stability implies asymptotic stability, which implies stability, which implies attractivity. Moreover, it can be seen that asymptotically stability is equivalent to stability and attractivity. + \end{remark} + \begin{remark} + An equivalent definition for stability is the following: $\forall \varepsilon>0$ $\exists \delta>0$ such that if $\norm{\vf{x}_0}<\delta$ then $\norm{\vf{X}(\vf{x}_0, t)}<\varepsilon$ for all $t\geq 0$. + \end{remark} + \begin{definition} + The equilibrium $\vf{X}(0, t)=0$ of \mcref{ICT:ode} is said to be unstable if $\exists \varepsilon>0$ such that $\forall \delta>0$ $\exists \vf{x_0}\in B(\vf{0},\delta)$ and a solution $\vf{X}(\vf{x}_0, \cdot)$ such that $\norm{\vf{X}(\vf{x}_0, t^*)}\geq \varepsilon$ for some $t^*\geq 0$. + \end{definition} + \begin{remark} + A solution may be unstable and attractive at the same time. For example, the system + $$ + \begin{cases} + \dot{x} = x^2(y-x) + y^5 \\ + \dot{y} = y^2(y-2x) + \end{cases} + $$ + exhibits the behaviour shown in \mcref{ICT:unstable_attractor}. + \begin{figure}[H] + \centering + \includestandalone[mode=image|tex,width=0.5\linewidth]{Images/unstable_attractor} + \caption{Unstable attractor} + \label{ICT:unstable_attractor} + \end{figure} + \end{remark} + \begin{definition} + We define the \emph{basin of attraction} of the origin as the set $\mathcal{A}$ of all initial conditions $\vf{x}_0$ such that the solution $\vf{X}(\vf{x}_0, \cdot)$ exists for all $t\geq 0$ and satisfies $\displaystyle\lim_{t\to\infty}\vf{X}(\vf{x}_0, t)=0$. + \end{definition} + \begin{theorem} + If the origin is asymptotically stable, then its basin of attraction is an open set included in $\mathcal{O}$. Besides, $\exists \beta_\mathcal{A}\in \mathcal{KL}$ such that $\forall \vf{x}_0\in\mathcal{A}$, any solution $\vf{X}(\vf{x}_0, \cdot)$ exists for all $t\geq 0$ and satisfies $\omega_{\mathcal{A}}(\norm{\vf{X}(\vf{x}_0, t)})\leq \beta_\mathcal{A}(\norm{\vf{x}_0}, t)$ for all $t\geq 0$. + \end{theorem} + \subsubsection{Sufficient conditions for stability} + \begin{theorem} + Assume that $\vf{f}\in\mathcal{C}^1$. Then: + \begin{enumerate} + \item The zero solution is exponentially stable if and only if the zero solution of the system $\dot{\vf{y}}=\vf{Df}(\vf{0}) \vf{y}$ is exponentially stable. + \item If $\vf{Df}(\vf{0})$ has an eigenvalue with positive real part, then the origin is unstable. + \end{enumerate} + \end{theorem} + \begin{remark} + In linear dynamics exponentially stability is equivalent to global exponentially stability, which in turn is equivalent to global asymptotic stability which is equivalent to asymptotic stability. + \end{remark} + \begin{corollary} + If $\vf{f}\in\mathcal{C}^1$ and $\vf{Df}(\vf{0})$ has all its eigenvalues with negative real part, then the origin is asymptotically stable. + \end{corollary} + \subsection{Control theory in PDEs} +\end{multicols} +\end{document} \ No newline at end of file diff --git a/main_math.idx b/main_math.idx index cb3b813..644f8ef 100644 --- a/main_math.idx +++ b/main_math.idx @@ -2662,7 +2662,7 @@ \indexentry{conditional consistency|hyperpage}{269} \indexentry{upwind condition|hyperpage}{269} \indexentry{stable|hyperpage}{269} -\indexentry{Courant-Friedrichs-Lewy condition|hyperpage}{270} +\indexentry{Courant-Friedrichs-Lewy condition|hyperpage}{269} \indexentry{Semidiscrete Fourier transform|hyperpage}{270} \indexentry{semidiscrete Fourier transform|hyperpage}{270} \indexentry{inverse semidiscrete Fourier transform|hyperpage}{270} @@ -2679,7 +2679,7 @@ \indexentry{elliptic|hyperpage}{273} \indexentry{hyperbolic|hyperpage}{273} \indexentry{parabolic|hyperpage}{273} -\indexentry{stable|hyperpage}{274} +\indexentry{stable|hyperpage}{273} \indexentry{Forward-time central-space|hyperpage}{274} \indexentry{Backward-time central-space|hyperpage}{274} \indexentry{Crank-Nicolson scheme|hyperpage}{274} @@ -2849,7 +2849,7 @@ \indexentry{Lebesgue differentiation theorem|hyperpage}{299} \indexentry{section|hyperpage}{299} \indexentry{Tonelli's theorem|hyperpage}{299} -\indexentry{Fubini's theorem|hyperpage}{300} +\indexentry{Fubini's theorem|hyperpage}{299} \indexentry{change of variables|hyperpage}{300} \indexentry{Change of variables|hyperpage}{300} \indexentry{distance|hyperpage}{300} @@ -2861,17 +2861,17 @@ \indexentry{normed vector space|hyperpage}{300} \indexentry{convergent series|hyperpage}{300} \indexentry{absolutely convergent|hyperpage}{300} -\indexentry{Banach space|hyperpage}{301} -\indexentry{Banach space|hyperpage}{301} +\indexentry{Banach space|hyperpage}{300} +\indexentry{Banach space|hyperpage}{300} \indexentry{uniform norm|hyperpage}{301} \indexentry{total subset|hyperpage}{301} \indexentry{separable|hyperpage}{301} -\indexentry{quotient space|hyperpage}{302} +\indexentry{quotient space|hyperpage}{301} \indexentry{Young's inequality for products|hyperpage}{302} \indexentry{Hölder conjugates|hyperpage}{302} \indexentry{Hölder's inequality|hyperpage}{302} -\indexentry{Hölder's inequality|hyperpage}{303} -\indexentry{Interpolation inequality|hyperpage}{303} +\indexentry{Hölder's inequality|hyperpage}{302} +\indexentry{Interpolation inequality|hyperpage}{302} \indexentry{Minkowski inequality|hyperpage}{303} \indexentry{uniform norm|hyperpage}{303} \indexentry{uniform norm|hyperpage}{303} @@ -2879,8 +2879,8 @@ \indexentry{subalgebra|hyperpage}{303} \indexentry{separating set|hyperpage}{303} \indexentry{separate the points|hyperpage}{303} -\indexentry{vanishes nowhere|hyperpage}{304} -\indexentry{self-conjugate|hyperpage}{304} +\indexentry{vanishes nowhere|hyperpage}{303} +\indexentry{self-conjugate|hyperpage}{303} \indexentry{Stone-Weierstra\ss \ theorem|hyperpage}{304} \indexentry{pointwise bounded|hyperpage}{304} \indexentry{locally bounded|hyperpage}{304} @@ -2892,7 +2892,7 @@ \indexentry{Arzelà-Ascoli theorem|hyperpage}{304} \indexentry{operator|hyperpage}{305} \indexentry{norm|hyperpage}{305} -\indexentry{sublinear|hyperpage}{306} +\indexentry{sublinear|hyperpage}{305} \indexentry{Marcinkiewicz interpolation theorem|hyperpage}{306} \indexentry{topological homeomorphism|hyperpage}{306} \indexentry{isomorphic|hyperpage}{306} @@ -2909,7 +2909,7 @@ \indexentry{Volterra operator with kernel $K$|hyperpage}{307} \indexentry{Hilbert-Schmidt operator with kernel $K$|hyperpage}{307} \indexentry{finite-rank operator|hyperpage}{307} -\indexentry{Neumann series|hyperpage}{308} +\indexentry{Neumann series|hyperpage}{307} \indexentry{convex functional|hyperpage}{308} \indexentry{Hahn-Banach theorem|hyperpage}{308} \indexentry{extension|hyperpage}{308} @@ -2927,7 +2927,7 @@ \indexentry{Baire's theorem|hyperpage}{309} \indexentry{Open mapping theorem|hyperpage}{309} \indexentry{Closed graph theorem|hyperpage}{309} -\indexentry{Banach-Steinhaus theorem|hyperpage}{310} +\indexentry{Banach-Steinhaus theorem|hyperpage}{309} \indexentry{semilinear|hyperpage}{310} \indexentry{inner product|hyperpage}{310} \indexentry{pre-Hilbert space|hyperpage}{310} @@ -2937,19 +2937,19 @@ \indexentry{orthogonal|hyperpage}{310} \indexentry{orthogonal complement|hyperpage}{310} \indexentry{Pythagorean theorem|hyperpage}{310} -\indexentry{Parallelogram law|hyperpage}{311} -\indexentry{Hilbert space|hyperpage}{311} -\indexentry{Hilbert space|hyperpage}{311} +\indexentry{Parallelogram law|hyperpage}{310} +\indexentry{Hilbert space|hyperpage}{310} +\indexentry{Hilbert space|hyperpage}{310} \indexentry{minimizer|hyperpage}{311} \indexentry{Projection theorem|hyperpage}{311} \indexentry{orthogonal projection on $F$|hyperpage}{311} \indexentry{Riesz representation theorem|hyperpage}{312} \indexentry{adjoint operator|hyperpage}{312} \indexentry{self-adjoint|hyperpage}{312} -\indexentry{orthogonal system|hyperpage}{313} -\indexentry{orthonormal system|hyperpage}{313} -\indexentry{complete|hyperpage}{313} -\indexentry{Hilbert basis|hyperpage}{313} +\indexentry{orthogonal system|hyperpage}{312} +\indexentry{orthonormal system|hyperpage}{312} +\indexentry{complete|hyperpage}{312} +\indexentry{Hilbert basis|hyperpage}{312} \indexentry{Fourier coefficients|hyperpage}{313} \indexentry{Fourier series|hyperpage}{313} \indexentry{Gram-Schmidt process|hyperpage}{313} @@ -2959,7 +2959,7 @@ \indexentry{Riesz-Fischer theorem|hyperpage}{313} \indexentry{Parseval identity|hyperpage}{313} \indexentry{Spectral theorem|hyperpage}{313} -\indexentry{Hilbert-Schmidt spectral representation theorem|hyperpage}{314} +\indexentry{Hilbert-Schmidt spectral representation theorem|hyperpage}{313} \indexentry{Fredholm alternative|hyperpage}{314} \indexentry{Law of total probability|hyperpage}{315} \indexentry{Substitution principle|hyperpage}{315} @@ -3064,34 +3064,36 @@ \indexentry{expansion map|hyperpage}{335} \indexentry{hyperbolicity|hyperpage}{336} \indexentry{mixing|hyperpage}{336} -\indexentry{$\mathcal {C}^0$-close|hyperpage}{336} -\indexentry{$\mathcal {C}^1$-close|hyperpage}{336} +\indexentry{$\mathcal {C}^0$-$\varepsilon $-close|hyperpage}{336} +\indexentry{$\mathcal {C}^1$-$\varepsilon $-close|hyperpage}{336} \indexentry{Structal stability|hyperpage}{336} \indexentry{conjugacy equation|hyperpage}{336} -\indexentry{sensitive dependence on initial conditions|hyperpage}{336} -\indexentry{Lyapunov exponent|hyperpage}{336} +\indexentry{sensitive dependence on initial conditions|hyperpage}{337} +\indexentry{Lyapunov exponent|hyperpage}{337} \indexentry{chaotic|hyperpage}{337} \indexentry{Hamiltonian vector field|hyperpage}{337} \indexentry{circle|hyperpage}{337} \indexentry{Existence of a lift|hyperpage}{337} \indexentry{lift|hyperpage}{337} \indexentry{preserves orientation|hyperpage}{337} -\indexentry{Arnold family|hyperpage}{337} +\indexentry{Arnold family|hyperpage}{338} \indexentry{subadditive|hyperpage}{338} \indexentry{superadditive|hyperpage}{338} \indexentry{Existence of the rotation number|hyperpage}{338} \indexentry{rotation number|hyperpage}{338} -\indexentry{rotation number|hyperpage}{338} -\indexentry{semi-conjugate|hyperpage}{338} -\indexentry{conjugate|hyperpage}{338} +\indexentry{rotation number|hyperpage}{339} +\indexentry{semi-conjugate|hyperpage}{339} +\indexentry{conjugate|hyperpage}{339} \indexentry{measure on $\mathcal {C}(\ensuremath {\mathbb {T}}^1)$|hyperpage}{339} \indexentry{probability measure|hyperpage}{339} \indexentry{push-forward measure|hyperpage}{339} \indexentry{invariant|hyperpage}{339} \indexentry{$F$-invariant|hyperpage}{339} -\indexentry{orbit|hyperpage}{339} -\indexentry{positive orbit|hyperpage}{339} -\indexentry{negative orbit|hyperpage}{339} +\indexentry{orbit|hyperpage}{340} +\indexentry{positive orbit|hyperpage}{340} +\indexentry{negative orbit|hyperpage}{340} +\indexentry{omega limit|hyperpage}{340} +\indexentry{alpha limit|hyperpage}{340} \indexentry{positively invariant|hyperpage}{340} \indexentry{negatively invariant|hyperpage}{340} \indexentry{invariant|hyperpage}{340} @@ -3100,105 +3102,82 @@ \indexentry{wandering point|hyperpage}{340} \indexentry{wandering domain|hyperpage}{340} \indexentry{non-wandering|hyperpage}{340} -\indexentry{minimal|hyperpage}{340} -\indexentry{minimal|hyperpage}{340} -\indexentry{measure of $U$|hyperpage}{340} -\indexentry{measure of $A$|hyperpage}{340} -\indexentry{support of $\mu $|hyperpage}{340} -\indexentry{Cantor set|hyperpage}{341} -\indexentry{uniquely ergodic|hyperpage}{341} -\indexentry{bounded variation|hyperpage}{342} -\indexentry{Denjoy-Koksma inequality|hyperpage}{342} -\indexentry{Denjoy theorem|hyperpage}{343} -\indexentry{$\sigma $-algebra|hyperpage}{344} -\indexentry{$\sigma $-algebra|hyperpage}{344} -\indexentry{measurable space|hyperpage}{344} -\indexentry{$\sigma $-algebra generated by $\mathcal {F}$|hyperpage}{344} -\indexentry{measurable|hyperpage}{344} -\indexentry{Measure|hyperpage}{344} -\indexentry{measure|hyperpage}{344} -\indexentry{measure space|hyperpage}{344} -\indexentry{integral of $f$ with respect to $\mu $|hyperpage}{344} -\indexentry{integral of $f$ with respect to $\mu $|hyperpage}{344} -\indexentry{Monotone convergence theorem|hyperpage}{344} -\indexentry{Fatou's lemma|hyperpage}{344} -\indexentry{Dominated convergence theorem|hyperpage}{344} -\indexentry{Product measure|hyperpage}{344} -\indexentry{product measure|hyperpage}{344} -\indexentry{$\sigma $-finite|hyperpage}{344} -\indexentry{Fubini|hyperpage}{344} -\indexentry{density|hyperpage}{345} -\indexentry{absolutely continuous|hyperpage}{345} -\indexentry{Radon-Nikodym|hyperpage}{345} -\indexentry{probability space|hyperpage}{345} -\indexentry{events|hyperpage}{345} -\indexentry{Random variable|hyperpage}{345} -\indexentry{$E$-valued random variable|hyperpage}{345} -\indexentry{Expectation|hyperpage}{345} -\indexentry{expectation of $X$|hyperpage}{345} -\indexentry{law of $X$|hyperpage}{345} -\indexentry{$\sigma $-algebra generated by $X$|hyperpage}{345} -\indexentry{Jensen's inequality|hyperpage}{345} -\indexentry{conditional expectation of $X$ given $\mathcal {G}$|hyperpage}{345} -\indexentry{Tower property|hyperpage}{346} -\indexentry{conditional expectation of $X$ given $Y$|hyperpage}{346} -\indexentry{probability kernel|hyperpage}{346} -\indexentry{conditional law of $X$ given $Y$|hyperpage}{346} -\indexentry{filtration|hyperpage}{346} -\indexentry{filtered probability space|hyperpage}{346} -\indexentry{adapted|hyperpage}{346} -\indexentry{martingale|hyperpage}{346} -\indexentry{submartingale|hyperpage}{346} -\indexentry{supermartingale|hyperpage}{346} -\indexentry{stopping time|hyperpage}{346} -\indexentry{stopped process|hyperpage}{346} -\indexentry{uniformly integrable|hyperpage}{346} -\indexentry{converges weakly|hyperpage}{347} -\indexentry{converges strongly|hyperpage}{347} -\indexentry{converges weakly-*|hyperpage}{347} -\indexentry{Banach-Alaoglu theorem|hyperpage}{347} -\indexentry{strongly lower-semicontinuous|hyperpage}{347} -\indexentry{weakly lower-semicontinuity|hyperpage}{347} -\indexentry{weak-* lower-semicontinuity|hyperpage}{347} -\indexentry{support plane|hyperpage}{347} -\indexentry{Sobolev spaces|hyperpage}{348} -\indexentry{Sobolev spaces|hyperpage}{348} -\indexentry{Poincaré's inequality|hyperpage}{348} -\indexentry{Poincaré-Wirtinger's inequality|hyperpage}{348} -\indexentry{embedded|hyperpage}{349} -\indexentry{compactly embedded|hyperpage}{349} -\indexentry{Gagliardo, Nirengerg and Sobolev's inequality|hyperpage}{349} -\indexentry{Hölder continuity|hyperpage}{349} -\indexentry{$\mathcal {C}^{k,\theta }$-Hölder continuous|hyperpage}{349} -\indexentry{Morrey's embedding|hyperpage}{349} -\indexentry{extension|hyperpage}{349} -\indexentry{extension operator|hyperpage}{349} -\indexentry{first order reflection|hyperpage}{350} -\indexentry{Reillich-Kondrachov's compactness theorem|hyperpage}{350} -\indexentry{trace operator|hyperpage}{350} -\indexentry{Gradient descent algorithm|hyperpage}{351} -\indexentry{gradient descent algorithm|hyperpage}{351} -\indexentry{Armijo-type rule|hyperpage}{351} -\indexentry{Frank-Wolfe-type method|hyperpage}{351} -\indexentry{$L$-co-coercive|hyperpage}{351} -\indexentry{firmly non-expansive|hyperpage}{351} -\indexentry{Baillon-Haddad|hyperpage}{351} -\indexentry{strongly convex|hyperpage}{351} -\indexentry{$\gamma $-convex|hyperpage}{351} -\indexentry{Newton method|hyperpage}{352} -\indexentry{Newton method|hyperpage}{352} -\indexentry{multistep method|hyperpage}{352} -\indexentry{Heavy ball method|hyperpage}{352} -\indexentry{Conjugate gradient|hyperpage}{352} -\indexentry{conjugate gradient method|hyperpage}{352} -\indexentry{Nesterov's accelerated gradient method|hyperpage}{352} -\indexentry{Nesterov's method|hyperpage}{352} -\indexentry{subgradient descent method|hyperpage}{352} -\indexentry{implicit descent|hyperpage}{352} -\indexentry{nonexpansive|hyperpage}{352} -\indexentry{avergaed|hyperpage}{352} -\indexentry{Opial's lemma|hyperpage}{352} -\indexentry{Krasnoselskii-Mann's convergence theorem|hyperpage}{353} +\indexentry{minimal|hyperpage}{341} +\indexentry{minimal|hyperpage}{341} +\indexentry{measure of $U$|hyperpage}{341} +\indexentry{measure of $A$|hyperpage}{341} +\indexentry{support of $\mu $|hyperpage}{341} +\indexentry{Cantor set|hyperpage}{342} +\indexentry{uniquely ergodic|hyperpage}{342} +\indexentry{bounded variation|hyperpage}{343} +\indexentry{Denjoy-Koksma inequality|hyperpage}{344} +\indexentry{Denjoy theorem|hyperpage}{344} +\indexentry{$\sigma $-algebra|hyperpage}{346} +\indexentry{$\sigma $-algebra|hyperpage}{346} +\indexentry{measurable space|hyperpage}{346} +\indexentry{$\sigma $-algebra generated by $\mathcal {F}$|hyperpage}{346} +\indexentry{measurable|hyperpage}{346} +\indexentry{Measure|hyperpage}{346} +\indexentry{measure|hyperpage}{346} +\indexentry{measure space|hyperpage}{346} +\indexentry{integral of $f$ with respect to $\mu $|hyperpage}{346} +\indexentry{integral of $f$ with respect to $\mu $|hyperpage}{346} +\indexentry{Monotone convergence theorem|hyperpage}{346} +\indexentry{Fatou's lemma|hyperpage}{346} +\indexentry{Dominated convergence theorem|hyperpage}{346} +\indexentry{Product measure|hyperpage}{346} +\indexentry{product measure|hyperpage}{346} +\indexentry{$\sigma $-finite|hyperpage}{346} +\indexentry{Fubini|hyperpage}{346} +\indexentry{density|hyperpage}{347} +\indexentry{absolutely continuous|hyperpage}{347} +\indexentry{Radon-Nikodym|hyperpage}{347} +\indexentry{probability space|hyperpage}{347} +\indexentry{events|hyperpage}{347} +\indexentry{Random variable|hyperpage}{347} +\indexentry{$E$-valued random variable|hyperpage}{347} +\indexentry{Expectation|hyperpage}{347} +\indexentry{expectation of $X$|hyperpage}{347} +\indexentry{law of $X$|hyperpage}{347} +\indexentry{$\sigma $-algebra generated by $X$|hyperpage}{347} +\indexentry{Jensen's inequality|hyperpage}{347} +\indexentry{conditional expectation of $X$ given $\mathcal {G}$|hyperpage}{347} +\indexentry{Tower property|hyperpage}{348} +\indexentry{conditional expectation of $X$ given $Y$|hyperpage}{348} +\indexentry{probability kernel|hyperpage}{348} +\indexentry{conditional law of $X$ given $Y$|hyperpage}{348} +\indexentry{filtration|hyperpage}{348} +\indexentry{filtered probability space|hyperpage}{348} +\indexentry{adapted|hyperpage}{348} +\indexentry{martingale|hyperpage}{348} +\indexentry{submartingale|hyperpage}{348} +\indexentry{supermartingale|hyperpage}{348} +\indexentry{stopping time|hyperpage}{348} +\indexentry{stopped process|hyperpage}{348} +\indexentry{uniformly integrable|hyperpage}{348} +\indexentry{converges weakly|hyperpage}{349} +\indexentry{converges strongly|hyperpage}{349} +\indexentry{converges weakly-*|hyperpage}{349} +\indexentry{Banach-Alaoglu theorem|hyperpage}{349} +\indexentry{strongly lower-semicontinuous|hyperpage}{349} +\indexentry{weakly lower-semicontinuity|hyperpage}{349} +\indexentry{weak-* lower-semicontinuity|hyperpage}{349} +\indexentry{support plane|hyperpage}{349} +\indexentry{Sobolev spaces|hyperpage}{350} +\indexentry{Sobolev spaces|hyperpage}{350} +\indexentry{Poincaré's inequality|hyperpage}{350} +\indexentry{Poincaré-Wirtinger's inequality|hyperpage}{350} +\indexentry{embedded|hyperpage}{351} +\indexentry{compactly embedded|hyperpage}{351} +\indexentry{Gagliardo, Nirengerg and Sobolev's inequality|hyperpage}{351} +\indexentry{Hölder continuity|hyperpage}{351} +\indexentry{$\mathcal {C}^{k,\theta }$-Hölder continuous|hyperpage}{351} +\indexentry{Morrey's embedding|hyperpage}{351} +\indexentry{extension|hyperpage}{351} +\indexentry{extension operator|hyperpage}{351} +\indexentry{first order reflection|hyperpage}{352} +\indexentry{Reillich-Kondrachov's compactness theorem|hyperpage}{352} +\indexentry{trace operator|hyperpage}{352} \indexentry{linear second-order PDE|hyperpage}{354} \indexentry{non-divergence form|hyperpage}{354} \indexentry{divergence form|hyperpage}{354} @@ -3219,147 +3198,169 @@ \indexentry{Abstract Fredholm alternative|hyperpage}{356} \indexentry{formal adjoint|hyperpage}{356} \indexentry{homogeneous adjoint problem|hyperpage}{356} -\indexentry{resolvent set|hyperpage}{356} -\indexentry{spectrum|hyperpage}{356} +\indexentry{resolvent set|hyperpage}{357} +\indexentry{spectrum|hyperpage}{357} +\indexentry{precompact|hyperpage}{357} \indexentry{Inner regularity|hyperpage}{357} \indexentry{Regularity up to the boundary|hyperpage}{357} -\indexentry{Weak maximum principle|hyperpage}{357} \indexentry{Weak maximum principle|hyperpage}{358} \indexentry{Weak maximum principle|hyperpage}{358} -\indexentry{Hopf's lemma|hyperpage}{358} -\indexentry{interior ball condition|hyperpage}{358} -\indexentry{Strong maximum principle|hyperpage}{358} -\indexentry{Continuation method|hyperpage}{359} -\indexentry{Brower fixed point|hyperpage}{359} -\indexentry{Schauder fixed point|hyperpage}{359} -\indexentry{Schaefer fixed point|hyperpage}{359} -\indexentry{Montecarlo estimator|hyperpage}{360} -\indexentry{seed|hyperpage}{360} -\indexentry{Mersenne Twister algorithm|hyperpage}{360} -\indexentry{Acceptance-rejection method|hyperpage}{360} -\indexentry{Box-Muller method|hyperpage}{361} -\indexentry{Polar method|hyperpage}{361} -\indexentry{antithetic method|hyperpage}{361} -\indexentry{control variate|hyperpage}{361} -\indexentry{multiple control variate estimator|hyperpage}{362} -\indexentry{equivalent|hyperpage}{362} -\indexentry{importance sampling estimator|hyperpage}{362} -\indexentry{Euler method|hyperpage}{363} -\indexentry{continuous Euler scheme|hyperpage}{363} -\indexentry{Strong error of the Euler scheme|hyperpage}{363} -\indexentry{Weak error of the Euler scheme|hyperpage}{363} -\indexentry{Romberg Extrapolation|hyperpage}{363} -\indexentry{Romberg Extrapolation|hyperpage}{363} -\indexentry{finite difference estimator|hyperpage}{364} -\indexentry{Black-Scholes model|hyperpage}{364} -\indexentry{tangent process|hyperpage}{364} -\indexentry{price of an American option|hyperpage}{365} -\indexentry{risk-free interest rate|hyperpage}{365} -\indexentry{discretization method|hyperpage}{365} -\indexentry{naive approach|hyperpage}{365} -\indexentry{Tsitsiklis-Van Roy method|hyperpage}{365} -\indexentry{Tsitsiklis-Van Roy method|hyperpage}{365} -\indexentry{Longstaff-Schwartz method|hyperpage}{366} -\indexentry{Longstaff-Schwartz method|hyperpage}{366} -\indexentry{Rogers's lemma|hyperpage}{366} -\indexentry{Dirichlet boundary conditions|hyperpage}{367} -\indexentry{Neumann boundary conditions|hyperpage}{367} -\indexentry{Robin boundary conditions|hyperpage}{367} -\indexentry{conforming Galerkin method|hyperpage}{367} -\indexentry{Céa's lemma|hyperpage}{367} -\indexentry{finite element|hyperpage}{367} -\indexentry{basis functions|hyperpage}{368} -\indexentry{local interpolant|hyperpage}{368} -\indexentry{subdivision|hyperpage}{368} -\indexentry{global interpolant|hyperpage}{368} -\indexentry{triangulation|hyperpage}{368} -\indexentry{affinely equivalent|hyperpage}{368} -\indexentry{Bramble-Hilbert lemma|hyperpage}{368} -\indexentry{diameter|hyperpage}{368} -\indexentry{insphere diameter|hyperpage}{368} -\indexentry{condition number|hyperpage}{368} -\indexentry{Local interpolation error|hyperpage}{369} -\indexentry{regular|hyperpage}{369} -\indexentry{Global interpolation error|hyperpage}{369} -\indexentry{spectral methods|hyperpage}{369} -\indexentry{trial functions|hyperpage}{369} -\indexentry{globally smooth|hyperpage}{369} -\indexentry{Galerkin methods|hyperpage}{369} -\indexentry{Collocation methods|hyperpage}{369} -\indexentry{collocation points|hyperpage}{369} -\indexentry{$\tau $ methods|hyperpage}{369} -\indexentry{interpolant|hyperpage}{369} -\indexentry{interpolant|hyperpage}{370} -\indexentry{jointly Gaussian|hyperpage}{371} -\indexentry{Brownian motion|hyperpage}{371} -\indexentry{Strong law of large numbers for Brownian motion|hyperpage}{371} -\indexentry{Markov property for Brownian motion|hyperpage}{371} -\indexentry{natural filtration|hyperpage}{371} -\indexentry{Martingale|hyperpage}{371} -\indexentry{martingale|hyperpage}{371} -\indexentry{adapted|hyperpage}{371} -\indexentry{sub-martingale|hyperpage}{371} -\indexentry{super-martingale|hyperpage}{371} -\indexentry{hitting time|hyperpage}{372} -\indexentry{Doob's optional sampling theorem|hyperpage}{372} -\indexentry{stopped process|hyperpage}{372} -\indexentry{Orthogonality of martingales|hyperpage}{372} -\indexentry{Doob's maximal inequality|hyperpage}{372} -\indexentry{absoulte variation|hyperpage}{372} -\indexentry{finite variation|hyperpage}{372} -\indexentry{Quadratic variation|hyperpage}{372} -\indexentry{mesh|hyperpage}{372} -\indexentry{continuous local martingale|hyperpage}{373} -\indexentry{localizing sequence|hyperpage}{373} -\indexentry{Doob's optional sampling theorem for local martingales|hyperpage}{373} -\indexentry{Levy's characterization of Brownian motion|hyperpage}{374} -\indexentry{isometry|hyperpage}{374} -\indexentry{partial isometry|hyperpage}{374} -\indexentry{Wiener integral|hyperpage}{374} -\indexentry{Wiener isometry|hyperpage}{374} -\indexentry{Wiener integral|hyperpage}{374} -\indexentry{Wiener integral|hyperpage}{374} -\indexentry{Chasles relation|hyperpage}{374} -\indexentry{progressive|hyperpage}{375} -\indexentry{Itô integral|hyperpage}{376} -\indexentry{Itô isometry|hyperpage}{376} -\indexentry{Itô integral|hyperpage}{376} -\indexentry{generalized Itô integral|hyperpage}{376} -\indexentry{Stochastic dominated convergence theorem|hyperpage}{376} -\indexentry{Itô process|hyperpage}{377} -\indexentry{martingale term|hyperpage}{377} -\indexentry{drift term|hyperpage}{377} -\indexentry{stochastic differential|hyperpage}{377} -\indexentry{quadratic variation|hyperpage}{377} -\indexentry{Stochastic integration by parts|hyperpage}{378} -\indexentry{Itô term|hyperpage}{378} -\indexentry{Itô's formula|hyperpage}{378} -\indexentry{Doléans-Dade exponential|hyperpage}{378} -\indexentry{Novikov's condition|hyperpage}{378} -\indexentry{Giranov's theorem|hyperpage}{379} -\indexentry{drift|hyperpage}{379} -\indexentry{diffusion|hyperpage}{379} -\indexentry{stochastic differential equation|hyperpage}{379} -\indexentry{SDE|hyperpage}{379} -\indexentry{solution of the SDE|hyperpage}{379} -\indexentry{Gronwall's lemma|hyperpage}{379} -\indexentry{Existence and uniqueness of solutions of SDEs|hyperpage}{379} -\indexentry{Langevin equation|hyperpage}{379} -\indexentry{Geometric Brownian motion|hyperpage}{380} -\indexentry{Black-Scholes process|hyperpage}{380} -\indexentry{homogeneous SDE|hyperpage}{380} -\indexentry{diffusions|hyperpage}{380} -\indexentry{Invariance under time shift|hyperpage}{380} -\indexentry{Generator|hyperpage}{380} -\indexentry{generator|hyperpage}{380} -\indexentry{Kolmogorov's equation|hyperpage}{380} -\indexentry{Feynman-Kac's formula|hyperpage}{381} -\indexentry{Itô's formula|hyperpage}{382} -\indexentry{Flow property|hyperpage}{382} -\indexentry{Dynamic programming principle|hyperpage}{382} -\indexentry{Fokker-Planck equation|hyperpage}{382} -\indexentry{control parameter|hyperpage}{383} -\indexentry{Finite horizon problem|hyperpage}{383} -\indexentry{running cost|hyperpage}{383} -\indexentry{terminal cost|hyperpage}{383} -\indexentry{Infinte horizon problem|hyperpage}{383} +\indexentry{Weak minimum principle|hyperpage}{358} +\indexentry{Schauder estimates|hyperpage}{359} +\indexentry{Weak maximum principle|hyperpage}{359} +\indexentry{Weak minimum principle|hyperpage}{360} +\indexentry{Hopf's lemma|hyperpage}{360} +\indexentry{interior ball condition|hyperpage}{360} +\indexentry{Strong maximum principle|hyperpage}{360} +\indexentry{Strong minimum principle|hyperpage}{360} +\indexentry{A priori estimate|hyperpage}{360} +\indexentry{Continuation method|hyperpage}{360} +\indexentry{Brower fixed point|hyperpage}{361} +\indexentry{Schauder fixed point|hyperpage}{361} +\indexentry{convex hull|hyperpage}{361} +\indexentry{Schaefer fixed point|hyperpage}{361} +\indexentry{Without constraints|hyperpage}{362} +\indexentry{With constraints|hyperpage}{362} +\indexentry{Carathéodory|hyperpage}{363} +\indexentry{Superposition operator|hyperpage}{363} +\indexentry{superposition operator|hyperpage}{363} +\indexentry{Fréchet differentiable|hyperpage}{363} +\indexentry{Fréchet derivative|hyperpage}{363} +\indexentry{Gâteaux differentiable|hyperpage}{363} +\indexentry{Gâteaux derivative|hyperpage}{363} +\indexentry{Without constraints|hyperpage}{364} +\indexentry{coercive|hyperpage}{364} +\indexentry{Bootstrap|hyperpage}{364} +\indexentry{Lagrange multipliers|hyperpage}{364} +\indexentry{Lagrange multiplier|hyperpage}{365} +\indexentry{Lagrange multipliers in several variables|hyperpage}{365} +\indexentry{Lagrange multipliers|hyperpage}{365} +\indexentry{Aplication|hyperpage}{365} +\indexentry{Nehari manifold method|hyperpage}{365} +\indexentry{Nehari manifold method|hyperpage}{365} +\indexentry{Palais-Smale condition at level $c$|hyperpage}{366} +\indexentry{Ambrosetti-Rabinowitz theorem|hyperpage}{366} +\indexentry{Palais-Smale sequence|hyperpage}{366} +\indexentry{Mountain pass theorem|hyperpage}{366} +\indexentry{superquadradicity condition|hyperpage}{366} +\indexentry{Montecarlo estimator|hyperpage}{368} +\indexentry{seed|hyperpage}{368} +\indexentry{Mersenne Twister algorithm|hyperpage}{368} +\indexentry{Acceptance-rejection method|hyperpage}{368} +\indexentry{Box-Muller method|hyperpage}{369} +\indexentry{Polar method|hyperpage}{369} +\indexentry{antithetic method|hyperpage}{369} +\indexentry{control variate|hyperpage}{369} +\indexentry{multiple control variate estimator|hyperpage}{370} +\indexentry{equivalent|hyperpage}{370} +\indexentry{importance sampling estimator|hyperpage}{370} +\indexentry{Euler method|hyperpage}{371} +\indexentry{continuous Euler scheme|hyperpage}{371} +\indexentry{Strong error of the Euler scheme|hyperpage}{371} +\indexentry{Weak error of the Euler scheme|hyperpage}{371} +\indexentry{Romberg Extrapolation|hyperpage}{371} +\indexentry{Romberg Extrapolation|hyperpage}{371} +\indexentry{finite difference estimator|hyperpage}{372} +\indexentry{Black-Scholes model|hyperpage}{372} +\indexentry{tangent process|hyperpage}{372} +\indexentry{price of an American option|hyperpage}{373} +\indexentry{risk-free interest rate|hyperpage}{373} +\indexentry{discretization method|hyperpage}{373} +\indexentry{naive approach|hyperpage}{373} +\indexentry{Tsitsiklis-Van Roy method|hyperpage}{373} +\indexentry{Tsitsiklis-Van Roy method|hyperpage}{373} +\indexentry{Longstaff-Schwartz method|hyperpage}{374} +\indexentry{Longstaff-Schwartz method|hyperpage}{374} +\indexentry{Rogers's lemma|hyperpage}{374} +\indexentry{Dirichlet boundary conditions|hyperpage}{375} +\indexentry{Neumann boundary conditions|hyperpage}{375} +\indexentry{Robin boundary conditions|hyperpage}{375} +\indexentry{conforming Galerkin method|hyperpage}{375} +\indexentry{Céa's lemma|hyperpage}{375} +\indexentry{finite element|hyperpage}{375} +\indexentry{basis functions|hyperpage}{376} +\indexentry{local interpolant|hyperpage}{376} +\indexentry{subdivision|hyperpage}{376} +\indexentry{global interpolant|hyperpage}{376} +\indexentry{triangulation|hyperpage}{376} +\indexentry{affinely equivalent|hyperpage}{376} +\indexentry{Bramble-Hilbert lemma|hyperpage}{376} +\indexentry{diameter|hyperpage}{376} +\indexentry{insphere diameter|hyperpage}{376} +\indexentry{condition number|hyperpage}{376} +\indexentry{Local interpolation error|hyperpage}{377} +\indexentry{regular|hyperpage}{377} +\indexentry{Global interpolation error|hyperpage}{377} +\indexentry{spectral methods|hyperpage}{377} +\indexentry{trial functions|hyperpage}{377} +\indexentry{globally smooth|hyperpage}{377} +\indexentry{Galerkin methods|hyperpage}{377} +\indexentry{Collocation methods|hyperpage}{377} +\indexentry{collocation points|hyperpage}{377} +\indexentry{$\tau $ methods|hyperpage}{377} +\indexentry{interpolant|hyperpage}{377} +\indexentry{interpolant|hyperpage}{378} +\indexentry{jointly Gaussian|hyperpage}{379} +\indexentry{Brownian motion|hyperpage}{379} +\indexentry{Strong law of large numbers for Brownian motion|hyperpage}{379} +\indexentry{Markov property for Brownian motion|hyperpage}{379} +\indexentry{natural filtration|hyperpage}{379} +\indexentry{Martingale|hyperpage}{379} +\indexentry{martingale|hyperpage}{379} +\indexentry{adapted|hyperpage}{379} +\indexentry{sub-martingale|hyperpage}{379} +\indexentry{super-martingale|hyperpage}{379} +\indexentry{hitting time|hyperpage}{380} +\indexentry{Doob's optional sampling theorem|hyperpage}{380} +\indexentry{stopped process|hyperpage}{380} +\indexentry{Orthogonality of martingales|hyperpage}{380} +\indexentry{Doob's maximal inequality|hyperpage}{380} +\indexentry{absoulte variation|hyperpage}{380} +\indexentry{finite variation|hyperpage}{380} +\indexentry{Quadratic variation|hyperpage}{380} +\indexentry{mesh|hyperpage}{380} +\indexentry{continuous local martingale|hyperpage}{381} +\indexentry{localizing sequence|hyperpage}{381} +\indexentry{Doob's optional sampling theorem for local martingales|hyperpage}{381} +\indexentry{Levy's characterization of Brownian motion|hyperpage}{382} +\indexentry{isometry|hyperpage}{382} +\indexentry{partial isometry|hyperpage}{382} +\indexentry{Wiener integral|hyperpage}{382} +\indexentry{Wiener isometry|hyperpage}{382} +\indexentry{Wiener integral|hyperpage}{382} +\indexentry{Wiener integral|hyperpage}{382} +\indexentry{Chasles relation|hyperpage}{382} +\indexentry{progressive|hyperpage}{383} +\indexentry{Itô integral|hyperpage}{384} +\indexentry{Itô isometry|hyperpage}{384} +\indexentry{Itô integral|hyperpage}{384} +\indexentry{generalized Itô integral|hyperpage}{384} +\indexentry{Stochastic dominated convergence theorem|hyperpage}{384} +\indexentry{Itô process|hyperpage}{385} +\indexentry{martingale term|hyperpage}{385} +\indexentry{drift term|hyperpage}{385} +\indexentry{stochastic differential|hyperpage}{385} +\indexentry{quadratic variation|hyperpage}{385} +\indexentry{Stochastic integration by parts|hyperpage}{386} +\indexentry{Itô term|hyperpage}{386} +\indexentry{Itô's formula|hyperpage}{386} +\indexentry{Doléans-Dade exponential|hyperpage}{386} +\indexentry{Novikov's condition|hyperpage}{386} +\indexentry{Giranov's theorem|hyperpage}{387} +\indexentry{drift|hyperpage}{387} +\indexentry{diffusion|hyperpage}{387} +\indexentry{stochastic differential equation|hyperpage}{387} +\indexentry{SDE|hyperpage}{387} +\indexentry{solution of the SDE|hyperpage}{387} +\indexentry{Gronwall's lemma|hyperpage}{387} +\indexentry{Existence and uniqueness of solutions of SDEs|hyperpage}{387} +\indexentry{Langevin equation|hyperpage}{387} +\indexentry{Geometric Brownian motion|hyperpage}{388} +\indexentry{Black-Scholes process|hyperpage}{388} +\indexentry{homogeneous SDE|hyperpage}{388} +\indexentry{diffusions|hyperpage}{388} +\indexentry{Invariance under time shift|hyperpage}{388} +\indexentry{Generator|hyperpage}{388} +\indexentry{generator|hyperpage}{388} +\indexentry{Kolmogorov's equation|hyperpage}{388} +\indexentry{Feynman-Kac's formula|hyperpage}{389} diff --git a/main_math.ilg b/main_math.ilg index 0f87c9c..83d0e68 100644 --- a/main_math.ilg +++ b/main_math.ilg @@ -1,6 +1,6 @@ This is makeindex, version 2.17 [TeX Live 2023] (kpathsea + Thai support). -Scanning input file main_math.idx.......done (3365 entries accepted, 0 rejected). -Sorting entries................................done (42220 comparisons). -Generating output file main_math.ind.......done (2868 lines written, 0 warnings). +Scanning input file main_math.idx.......done (3366 entries accepted, 0 rejected). +Sorting entries.................................done (43903 comparisons). +Generating output file main_math.ind.......done (2866 lines written, 0 warnings). Output written in main_math.ind. Transcript written in main_math.ilg. diff --git a/main_math.ind b/main_math.ind index eeb866e..bf461d8 100644 --- a/main_math.ind +++ b/main_math.ind @@ -1,13 +1,12 @@ \begin{theindex} \item $(G,\cdot )$-space, \hyperpage{211} - \item $E$-valued random variable, \hyperpage{345} + \item $E$-valued random variable, \hyperpage{347} \item $F$-distribution with degrees of freedom $d_1$ and $d_2$, \hyperpage{252} \item $F$-invariant, \hyperpage{339} \item $F$-linearly independent, \hyperpage{170} \item $K$-field morphism, \hyperpage{165} - \item $L$-co-coercive, \hyperpage{351} \item $N$-th partial sum of $Sf$, \hyperpage{83} \item $N$-th partial sum of the series, \hyperpage{76}, \hyperpage{105} @@ -25,24 +24,23 @@ \item $\alpha $-limit set, \hyperpage{131} \item $\ensuremath {\mathbb {C}}$-differentiable, \hyperpage{109} \item $\ensuremath {\mathbb {R}}$-differentiable, \hyperpage{110} - \item $\gamma $-convex, \hyperpage{351} - \item $\mathcal {C}^0$-close, \hyperpage{336} - \item $\mathcal {C}^1$-close, \hyperpage{336} - \item $\mathcal {C}^{k,\theta }$-Hölder continuous, \hyperpage{349} + \item $\mathcal {C}^0$-$\varepsilon $-close, \hyperpage{336} + \item $\mathcal {C}^1$-$\varepsilon $-close, \hyperpage{336} + \item $\mathcal {C}^{k,\theta }$-Hölder continuous, \hyperpage{351} \item $\omega $-limit point, \hyperpage{131} \item $\omega $-limit set, \hyperpage{131} \item $\sigma $-additivity, \hyperpage{173}, \hyperpage{291} \item $\sigma $-algebra, \hyperpage{172}, \hyperpage{291}, - \hyperpage{344} + \hyperpage{346} \item $\sigma $-algebra generated, \hyperpage{172} - \item $\sigma $-algebra generated by $X$, \hyperpage{345} + \item $\sigma $-algebra generated by $X$, \hyperpage{347} \item $\sigma $-algebra generated by $\boldsymbol {\mathrm {X}}$, \hyperpage{321} - \item $\sigma $-algebra generated by $\mathcal {F}$, \hyperpage{344} + \item $\sigma $-algebra generated by $\mathcal {F}$, \hyperpage{346} \item $\sigma $-algebra of all Lebesgue measurable sets in $\ensuremath {\mathbb {R}}^n$, \hyperpage{175} - \item $\sigma $-finite, \hyperpage{344} - \item $\tau $ methods, \hyperpage{369} + \item $\sigma $-finite, \hyperpage{346} + \item $\tau $ methods, \hyperpage{377} \item $d$-dimensional standard Brownian motion, \hyperpage{332} \item $i$-th pivot, \hyperpage{14} \item $k$-linear map, \hyperpage{155} @@ -80,6 +78,7 @@ \indexspace + \item A priori estimate, \hyperpage{360} \item A-stable, \hyperpage{261} \item a.e., \hyperpage{293} \item Abel's summation formula, \hyperpage{77}, \hyperpage{106} @@ -93,13 +92,13 @@ \item Absolute geometry, \hyperpage{64} \item absolute value, \hyperpage{25} \item absolutely continuous, \hyperpage{178}, \hyperpage{180}, - \hyperpage{345} + \hyperpage{347} \item absolutely convergent, \hyperpage{77}, \hyperpage{106}, \hyperpage{117}, \hyperpage{300} \item absolutely stable, \hyperpage{261} - \item absoulte variation, \hyperpage{372} + \item absoulte variation, \hyperpage{380} \item Abstract Fredholm alternative, \hyperpage{356} - \item Acceptance-rejection method, \hyperpage{360} + \item Acceptance-rejection method, \hyperpage{368} \item acceptation region, \hyperpage{199} \item ACCP, \hyperpage{46} \item accumulation point, \hyperpage{26}, \hyperpage{54} @@ -107,7 +106,7 @@ \item Adams method, \hyperpage{262} \item Adams-Bashforth method, \hyperpage{262} \item Adams-Moulton method, \hyperpage{262} - \item adapted, \hyperpage{346}, \hyperpage{371} + \item adapted, \hyperpage{348}, \hyperpage{379} \item adherence, \hyperpage{54} \item adherent point, \hyperpage{54}, \hyperpage{207} \item adjacency matrix, \hyperpage{50} @@ -122,7 +121,7 @@ \item affine plane, \hyperpage{66} \item affine space, \hyperpage{69} \item affine subvariety, \hyperpage{70} - \item affinely equivalent, \hyperpage{368} + \item affinely equivalent, \hyperpage{376} \item affinely independents, \hyperpage{69} \item affinity, \hyperpage{70} \item AIC, \hyperpage{257} @@ -139,10 +138,12 @@ \item algebraically closed field, \hyperpage{21} \item almost everywhere, \hyperpage{293} \item Almost orthogonality lemma, \hyperpage{306} + \item alpha limit, \hyperpage{340} \item alternating, \hyperpage{155} \item alternating group, \hyperpage{42} \item alternating series, \hyperpage{77} \item alternative hypothesis, \hyperpage{199} + \item Ambrosetti-Rabinowitz theorem, \hyperpage{366} \item amplification factor, \hyperpage{270} \item amplification polynomial, \hyperpage{273} \item Ampère's law, \hyperpage{278} @@ -155,8 +156,9 @@ \item angle-preserving, \hyperpage{149} \item anisotropic, \hyperpage{74} \item annihilator, \hyperpage{19} - \item antithetic method, \hyperpage{361} + \item antithetic method, \hyperpage{369} \item aperiodic, \hyperpage{320} + \item Aplication, \hyperpage{365} \item approximation of identity, \hyperpage{79}, \hyperpage{241} \item approximations of the identity, \hyperpage{235} \item arc length, \hyperpage{60} @@ -167,8 +169,7 @@ \item Archimedean property, \hyperpage{25} \item argument, \hyperpage{104} \item Argument principle, \hyperpage{118} - \item Armijo-type rule, \hyperpage{351} - \item Arnold family, \hyperpage{337} + \item Arnold family, \hyperpage{338} \item Artin's lemma, \hyperpage{169} \item Arzelà-Ascoli theorem, \hyperpage{121}, \hyperpage{125}, \hyperpage{304} @@ -192,7 +193,6 @@ \item autonomous, \hyperpage{122} \item average, \hyperpage{289} \item average response, \hyperpage{253} - \item avergaed, \hyperpage{352} \item Axiom of Archimedes, \hyperpage{63} \item Axiom of choice, \hyperpage{213} \item Axiom of completeness, \hyperpage{63} @@ -205,14 +205,13 @@ \item backward Euler method, \hyperpage{258} \item Backward-time central-space, \hyperpage{268}, \hyperpage{274} - \item Baillon-Haddad, \hyperpage{351} \item Baire's theorem, \hyperpage{309} \item balance equation, \hyperpage{329} \item ball, \hyperpage{205} \item Banach fixed-point theorem, \hyperpage{125} - \item Banach space, \hyperpage{301} - \item Banach-Alaoglu theorem, \hyperpage{347} - \item Banach-Steinhaus theorem, \hyperpage{310} + \item Banach space, \hyperpage{300} + \item Banach-Alaoglu theorem, \hyperpage{349} + \item Banach-Steinhaus theorem, \hyperpage{309} \item bandlimited, \hyperpage{239} \item Barrow's law, \hyperpage{298} \item barycenter, \hyperpage{69} @@ -221,7 +220,7 @@ \item basic feasible solutions, \hyperpage{51} \item basin, \hyperpage{131} \item basis, \hyperpage{16}, \hyperpage{206} - \item basis functions, \hyperpage{368} + \item basis functions, \hyperpage{376} \item Bautin's theorem, \hyperpage{226} \item Bayes estimate, \hyperpage{203} \item Bayes' formula, \hyperpage{174} @@ -254,8 +253,8 @@ \item bipartite, \hyperpage{50} \item birth and death process, \hyperpage{329} \item Bisection method, \hyperpage{90} - \item Black-Scholes model, \hyperpage{364} - \item Black-Scholes process, \hyperpage{380} + \item Black-Scholes model, \hyperpage{372} + \item Black-Scholes process, \hyperpage{388} \item block matrix, \hyperpage{15} \item blow-down, \hyperpage{225} \item Blow-up in cartesian coordinates, \hyperpage{226} @@ -269,6 +268,7 @@ \item Bonferroni's method, \hyperpage{252} \item Bonnet's theorem, \hyperpage{152} \item Boolean ring, \hyperpage{42} + \item Bootstrap, \hyperpage{364} \item bootstrap distribution, \hyperpage{202} \item Bootstrap-t confidence interval, \hyperpage{202} \item bootstrap-t confidence interval, \hyperpage{202} @@ -284,15 +284,15 @@ \item bounded from above, \hyperpage{25, 26} \item bounded from below, \hyperpage{25, 26} \item bounded set, \hyperpage{54} - \item bounded variation, \hyperpage{342} + \item bounded variation, \hyperpage{343} \item box topology, \hyperpage{209} \item Box-Cox transformation, \hyperpage{257} - \item Box-Muller method, \hyperpage{361} - \item Bramble-Hilbert lemma, \hyperpage{368} + \item Box-Muller method, \hyperpage{369} + \item Bramble-Hilbert lemma, \hyperpage{376} \item bridge, \hyperpage{50} \item Brouwer's fixed-point theorem, \hyperpage{215} - \item Brower fixed point, \hyperpage{359} - \item Brownian motion, \hyperpage{330}, \hyperpage{371} + \item Brower fixed point, \hyperpage{361} + \item Brownian motion, \hyperpage{330}, \hyperpage{379} \item Broyden's method, \hyperpage{263} \item Broyden-Fletcher-Goldfarb-Shanno method, \hyperpage{264} \item BTCS, \hyperpage{268} @@ -308,9 +308,10 @@ \hyperpage{51} \item canonical form of a linear programming to minimize, \hyperpage{51} - \item Cantor set, \hyperpage{209}, \hyperpage{341} + \item Cantor set, \hyperpage{209}, \hyperpage{342} \item Cantor's theorem, \hyperpage{9} \item Cantor-Bernstein theorem, \hyperpage{9} + \item Carathéodory, \hyperpage{363} \item Cardano-Vieta's formulas, \hyperpage{114} \item cardinal, \hyperpage{6} \item Cartesian equations, \hyperpage{70} @@ -377,7 +378,7 @@ \item Characteristic function, \hyperpage{191} \item characteristic function, \hyperpage{9}, \hyperpage{191} \item characteristic polynomial, \hyperpage{20}, \hyperpage{49} - \item Chasles relation, \hyperpage{374} + \item Chasles relation, \hyperpage{382} \item Chebyshev method, \hyperpage{90} \item Chebyshev polynomials, \hyperpage{96} \item Chebyshev's inequality, \hyperpage{186}, \hyperpage{297} @@ -429,13 +430,13 @@ \item codimension, \hyperpage{223} \item coefficient of determination, \hyperpage{252} \item coefficients, \hyperpage{11} - \item coercive, \hyperpage{354} + \item coercive, \hyperpage{354}, \hyperpage{364} \item cofactor, \hyperpage{136} \item cofactor matrix, \hyperpage{15} \item Cofinite topology, \hyperpage{206} \item collineation, \hyperpage{66} - \item Collocation methods, \hyperpage{369} - \item collocation points, \hyperpage{369} + \item Collocation methods, \hyperpage{377} + \item collocation points, \hyperpage{377} \item column rank, \hyperpage{16} \item Combinations with repetition, \hyperpage{10} \item Combinations without repetition, \hyperpage{10} @@ -446,7 +447,7 @@ \item Compact space, \hyperpage{213} \item compact subset, \hyperpage{213} \item compact support, \hyperpage{79} - \item compactly embedded, \hyperpage{349} + \item compactly embedded, \hyperpage{351} \item compactness, \hyperpage{213} \item Comparison test, \hyperpage{76}, \hyperpage{80}, \hyperpage{183} @@ -456,7 +457,7 @@ \item complement, \hyperpage{6} \item Complementary property, \hyperpage{52} \item complementary subspace, \hyperpage{17} - \item complete, \hyperpage{54}, \hyperpage{300}, \hyperpage{313} + \item complete, \hyperpage{54}, \hyperpage{300}, \hyperpage{312} \item complete graph, \hyperpage{49} \item Complete pivoting, \hyperpage{102} \item complex conjugate, \hyperpage{24}, \hyperpage{104} @@ -485,13 +486,13 @@ \item computational efficiency, \hyperpage{91} \item concave, \hyperpage{30} \item Condensation test, \hyperpage{76} - \item condition number, \hyperpage{99}, \hyperpage{368} + \item condition number, \hyperpage{99}, \hyperpage{376} \item conditional consistency, \hyperpage{269} \item conditional expectation, \hyperpage{186} \item conditional expectation of $X$ given $\mathcal {G}$, - \hyperpage{345} - \item conditional expectation of $X$ given $Y$, \hyperpage{346} - \item conditional law of $X$ given $Y$, \hyperpage{346} + \hyperpage{347} + \item conditional expectation of $X$ given $Y$, \hyperpage{348} + \item conditional law of $X$ given $Y$, \hyperpage{348} \item conditional probability, \hyperpage{174} \item conditional probability density function, \hyperpage{182} \item conditional probability mass function, \hyperpage{182} @@ -507,18 +508,16 @@ \item configuration, \hyperpage{67} \item conformal, \hyperpage{119}, \hyperpage{149} \item conformal representation, \hyperpage{119} - \item conforming Galerkin method, \hyperpage{367} + \item conforming Galerkin method, \hyperpage{375} \item Congruence axioms, \hyperpage{63} \item congruence relation, \hyperpage{63} \item conic, \hyperpage{73} \item conjugacy, \hyperpage{132} \item conjugacy equation, \hyperpage{336} \item conjugate, \hyperpage{104}, \hyperpage{132}, \hyperpage{202}, - \hyperpage{338} + \hyperpage{339} \item conjugate dynamical systems, \hyperpage{131} - \item Conjugate gradient, \hyperpage{352} \item Conjugate gradient method, \hyperpage{264} - \item conjugate gradient method, \hyperpage{352} \item conjugate Poisson kernel, \hyperpage{248} \item conjugation action, \hyperpage{41} \item connected, \hyperpage{50}, \hyperpage{54}, \hyperpage{214} @@ -540,7 +539,7 @@ \item Construction of a non-SAS geometry, \hyperpage{66} \item contact, \hyperpage{144} \item contact of order $\geq n$ at $a$, \hyperpage{31} - \item Continuation method, \hyperpage{359} + \item Continuation method, \hyperpage{360} \item Continuity axioms, \hyperpage{63} \item Continuity correction, \hyperpage{192} \item continuity correction, \hyperpage{192} @@ -551,9 +550,9 @@ \item continuous at $x_0$, \hyperpage{28} \item Continuous equation, \hyperpage{277} \item continuous equation, \hyperpage{277} - \item continuous Euler scheme, \hyperpage{363} + \item continuous Euler scheme, \hyperpage{371} \item Continuous function, \hyperpage{208} - \item continuous local martingale, \hyperpage{373} + \item continuous local martingale, \hyperpage{381} \item Continuous memorylessness property, \hyperpage{178} \item Continuous uniform distribution, \hyperpage{178} \item continuous uniform distribution, \hyperpage{178} @@ -561,8 +560,7 @@ \item contractible, \hyperpage{139} \item contraction, \hyperpage{55}, \hyperpage{90} \item contrast matrix, \hyperpage{201} - \item control parameter, \hyperpage{383} - \item control variate, \hyperpage{361} + \item control variate, \hyperpage{369} \item converge in mean, \hyperpage{298} \item converge in norm $L^p$, \hyperpage{87} \item convergent, \hyperpage{26}, \hyperpage{54}, \hyperpage{76}, @@ -576,12 +574,13 @@ \item converges in probability, \hyperpage{187} \item converges in the $p$-th mean, \hyperpage{189} \item converges pointwise, \hyperpage{77, 78}, \hyperpage{106, 107} - \item converges strongly, \hyperpage{347} + \item converges strongly, \hyperpage{349} \item converges uniformly, \hyperpage{77, 78}, \hyperpage{106, 107} - \item converges weakly, \hyperpage{347} - \item converges weakly-*, \hyperpage{347} + \item converges weakly, \hyperpage{349} + \item converges weakly-*, \hyperpage{349} \item convex, \hyperpage{30}, \hyperpage{115} \item convex functional, \hyperpage{308} + \item convex hull, \hyperpage{361} \item convolution, \hyperpage{79}, \hyperpage{240}, \hyperpage{244} \item Cook's distance, \hyperpage{255} \item coordinate chart, \hyperpage{147}, \hyperpage{216} @@ -593,7 +592,7 @@ \item Correspondence theorem, \hyperpage{40}, \hyperpage{44} \item countable, \hyperpage{25}, \hyperpage{213} \item Countable subadditivity, \hyperpage{173} - \item Courant-Friedrichs-Lewy condition, \hyperpage{270} + \item Courant-Friedrichs-Lewy condition, \hyperpage{269} \item Covariance, \hyperpage{185} \item covariance, \hyperpage{185}, \hyperpage{249} \item covariance function, \hyperpage{330} @@ -629,7 +628,7 @@ \item cyclotomic, \hyperpage{170} \item càd, \hyperpage{326} \item càdlàg, \hyperpage{176} - \item Céa's lemma, \hyperpage{367} + \item Céa's lemma, \hyperpage{375} \indexspace @@ -655,10 +654,10 @@ \item Dehomogenization, \hyperpage{74} \item dehomogenization, \hyperpage{70} \item Delta method, \hyperpage{196} - \item Denjoy theorem, \hyperpage{343} - \item Denjoy-Koksma inequality, \hyperpage{342} + \item Denjoy theorem, \hyperpage{344} + \item Denjoy-Koksma inequality, \hyperpage{344} \item dense, \hyperpage{207} - \item density, \hyperpage{278}, \hyperpage{345} + \item density, \hyperpage{278}, \hyperpage{347} \item density function, \hyperpage{178} \item Dependence on $\boldsymbol {\mathrm {\lambda }}$, \hyperpage{129} @@ -686,7 +685,7 @@ \item diagonal, \hyperpage{20} \item diagonalizable, \hyperpage{20} \item Diagonalization theorem, \hyperpage{20} - \item diameter, \hyperpage{368} + \item diameter, \hyperpage{376} \item dicyclic group, \hyperpage{42} \item diffeomorphism, \hyperpage{57} \item Differentiability criterion, \hyperpage{56} @@ -702,11 +701,11 @@ \item differential operator over distributions, \hyperpage{245} \item differential system, \hyperpage{122} \item differentiation operator, \hyperpage{285} - \item diffusion, \hyperpage{379} + \item diffusion, \hyperpage{387} \item diffusion coefficient, \hyperpage{278} \item Diffusion equation, \hyperpage{278} \item diffusion flux, \hyperpage{278} - \item diffusions, \hyperpage{380} + \item diffusions, \hyperpage{388} \item diffusivity, \hyperpage{278} \item digital topology, \hyperpage{206} \item dihedral group, \hyperpage{42} @@ -723,7 +722,7 @@ \item director subspace, \hyperpage{70} \item Dirichlet, \hyperpage{274} \item Dirichlet boundary condition, \hyperpage{354} - \item Dirichlet boundary conditions, \hyperpage{367} + \item Dirichlet boundary conditions, \hyperpage{375} \item Dirichlet kernel, \hyperpage{84}, \hyperpage{233} \item Dirichlet problem, \hyperpage{140}, \hyperpage{288} \item Dirichlet problem in the disc, \hyperpage{288} @@ -745,7 +744,7 @@ \item Discrete topology, \hyperpage{206} \item Discrete uniform distribution, \hyperpage{177} \item discrete uniform distribution, \hyperpage{177} - \item discretization method, \hyperpage{365} + \item discretization method, \hyperpage{373} \item discriminant, \hyperpage{169} \item displacement current, \hyperpage{278} \item distance, \hyperpage{53}, \hyperpage{82}, \hyperpage{205}, @@ -768,22 +767,22 @@ \hyperpage{62}, \hyperpage{160} \item divergent, \hyperpage{26}, \hyperpage{76}, \hyperpage{105, 106} \item divided difference, \hyperpage{93} - \item Doléans-Dade exponential, \hyperpage{378} + \item Doléans-Dade exponential, \hyperpage{386} \item domain, \hyperpage{115}, \hyperpage{148} \item dominant eigenvalue, \hyperpage{100} \item dominant eigenvector, \hyperpage{100} \item Dominated convergence theorem, \hyperpage{184}, \hyperpage{189}, - \hyperpage{297}, \hyperpage{344} - \item Doob's maximal inequality, \hyperpage{372} - \item Doob's optional sampling theorem, \hyperpage{372} + \hyperpage{297}, \hyperpage{346} + \item Doob's maximal inequality, \hyperpage{380} + \item Doob's optional sampling theorem, \hyperpage{380} \item Doob's optional sampling theorem for local martingales, - \hyperpage{373} + \hyperpage{381} \item dot product, \hyperpage{53} \item double, \hyperpage{90} \item Double dual space, \hyperpage{19} \item double dual space, \hyperpage{19} - \item drift, \hyperpage{379} - \item drift term, \hyperpage{377} + \item drift, \hyperpage{387} + \item drift term, \hyperpage{385} \item Du Bois-Reymond's test, \hyperpage{107} \item Du-Fort-Frankel scheme, \hyperpage{274} \item dual basis, \hyperpage{19} @@ -795,7 +794,6 @@ \item Duhamel principle, \hyperpage{287} \item dummy variable, \hyperpage{253} \item dyadic partition of order $n$, \hyperpage{183} - \item Dynamic programming principle, \hyperpage{382} \item dynamical system, \hyperpage{130} \indexspace @@ -816,7 +814,7 @@ \item elliptic equation, \hyperpage{277} \item elliptic point, \hyperpage{150} \item elliptic sector, \hyperpage{133} - \item embedded, \hyperpage{349} + \item embedded, \hyperpage{351} \item embedded methods, \hyperpage{260} \item empirical distribution, \hyperpage{202} \item empty set, \hyperpage{6} @@ -840,7 +838,7 @@ \item equivalence relation, \hyperpage{8} \item equivalent, \hyperpage{13}, \hyperpage{17}, \hyperpage{23}, \hyperpage{73}, \hyperpage{130}, \hyperpage{132}, - \hyperpage{306}, \hyperpage{362} + \hyperpage{306}, \hyperpage{370} \item equivalent dynamical systems, \hyperpage{131} \item Ergotic theorem, \hyperpage{324, 325} \item error of type I, \hyperpage{199} @@ -862,7 +860,7 @@ \item Euclidean vector space, \hyperpage{24} \item Euclidian division, \hyperpage{11} \item Euler characteristic, \hyperpage{218} - \item Euler method, \hyperpage{258}, \hyperpage{363} + \item Euler method, \hyperpage{258}, \hyperpage{371} \item Euler theorem, \hyperpage{50} \item Euler's formula, \hyperpage{108}, \hyperpage{150} \item Euler's theorem, \hyperpage{11} @@ -875,12 +873,12 @@ \item even extension, \hyperpage{84} \item even periodic extension, \hyperpage{283} \item event, \hyperpage{173} - \item events, \hyperpage{345} + \item events, \hyperpage{347} \item evolute, \hyperpage{144} \item exact, \hyperpage{156} \item Examples of Euclidean motions, \hyperpage{73} \item Excluded point topology, \hyperpage{206} - \item Existence and uniqueness of solutions of SDEs, \hyperpage{379} + \item Existence and uniqueness of solutions of SDEs, \hyperpage{387} \item Existence of a lift, \hyperpage{337} \item Existence of orthogonal polynomials, \hyperpage{96} \item Existence of the rotation number, \hyperpage{338} @@ -888,10 +886,10 @@ \item exists and it is finite, \hyperpage{298} \item expansion map, \hyperpage{335} \item Expansive fixed point theorem, \hyperpage{229} - \item Expectation, \hyperpage{183}, \hyperpage{345} + \item Expectation, \hyperpage{183}, \hyperpage{347} \item expectation, \hyperpage{178}, \hyperpage{182--184}, \hyperpage{249} - \item expectation of $X$, \hyperpage{345} + \item expectation of $X$, \hyperpage{347} \item explicit, \hyperpage{258} \item explicit Euler method, \hyperpage{258} \item explicit form, \hyperpage{122} @@ -906,8 +904,8 @@ \item exponential series, \hyperpage{48} \item extended complex plane, \hyperpage{105} \item extended real numbers, \hyperpage{105} - \item extension, \hyperpage{126}, \hyperpage{308}, \hyperpage{349} - \item extension operator, \hyperpage{349} + \item extension, \hyperpage{126}, \hyperpage{308}, \hyperpage{351} + \item extension operator, \hyperpage{351} \item exterior, \hyperpage{54} \item exterior angle, \hyperpage{160} \item Exterior angle theorem, \hyperpage{64} @@ -924,7 +922,7 @@ \item Fano configuration, \hyperpage{67} \item fast Fourier transform, \hyperpage{240} \item Fatou's lemma, \hyperpage{184}, \hyperpage{297}, - \hyperpage{344} + \hyperpage{346} \item feasible region, \hyperpage{51} \item feasible solution, \hyperpage{51} \item Fejér kernel, \hyperpage{85}, \hyperpage{234} @@ -934,7 +932,7 @@ \item FEM, \hyperpage{275} \item Fermat's little theorem, \hyperpage{11} \item Fermat's principle, \hyperpage{278} - \item Feynman-Kac's formula, \hyperpage{381} + \item Feynman-Kac's formula, \hyperpage{389} \item FFT, \hyperpage{240} \item Fick's law, \hyperpage{278} \item Fick's law of diffusion, \hyperpage{278} @@ -945,38 +943,36 @@ \item field of complex numbers, \hyperpage{104} \item field of fractions, \hyperpage{46}, \hyperpage{163} \item field of rational functions, \hyperpage{163} - \item filtered probability space, \hyperpage{346} - \item filtration, \hyperpage{321}, \hyperpage{346} + \item filtered probability space, \hyperpage{348} + \item filtration, \hyperpage{321}, \hyperpage{348} \item filtration space, \hyperpage{321} \item finer, \hyperpage{205} \item finer than, \hyperpage{32}, \hyperpage{58} \item finite, \hyperpage{25}, \hyperpage{49}, \hyperpage{164}, \hyperpage{213}, \hyperpage{294} \item finite $k$-th moment, \hyperpage{185} - \item finite difference estimator, \hyperpage{364} + \item finite difference estimator, \hyperpage{372} \item finite difference method, \hyperpage{265} \item finite difference scheme, \hyperpage{268} - \item finite element, \hyperpage{367} + \item finite element, \hyperpage{375} \item finite element method, \hyperpage{275} \item finite expectation, \hyperpage{182--184} \item Finite field, \hyperpage{166} \item finite field, \hyperpage{166} - \item Finite horizon problem, \hyperpage{383} \item finite moment of order $k$, \hyperpage{185} \item Finite subadditivity, \hyperpage{173} - \item finite variation, \hyperpage{372} + \item finite variation, \hyperpage{380} \item Finite-dimensional distributions, \hyperpage{333} \item finite-dimensional distributions, \hyperpage{333} \item finite-rank operator, \hyperpage{307} \item finitely generated, \hyperpage{165} - \item firmly non-expansive, \hyperpage{351} \item first and second characteristic polynomials, \hyperpage{261} \item First Borel-Cantelli lemma, \hyperpage{188} \item first fundamental form, \hyperpage{148} \item first integral, \hyperpage{134}, \hyperpage{154} \item First isomorphism theorem, \hyperpage{18}, \hyperpage{39}, \hyperpage{44} - \item first order reflection, \hyperpage{350} + \item first order reflection, \hyperpage{352} \item First Sylow theorem, \hyperpage{41} \item Fisher information, \hyperpage{195} \item Fisher's theorem, \hyperpage{197} @@ -992,9 +988,7 @@ \item flow, \hyperpage{128}, \hyperpage{132} \item Flow box theorem, \hyperpage{132} \item flow of the linear ODE, \hyperpage{126} - \item Flow property, \hyperpage{382} \item flux, \hyperpage{62}, \hyperpage{159} - \item Fokker-Planck equation, \hyperpage{382} \item formal adjoint, \hyperpage{356} \item Formal derivative, \hyperpage{167} \item formal derivative, \hyperpage{167} @@ -1010,7 +1004,6 @@ \hyperpage{244}, \hyperpage{313} \item Fourier transform operator, \hyperpage{232} \item Fourier's law, \hyperpage{278} - \item Frank-Wolfe-type method, \hyperpage{351} \item Fredholm alternative, \hyperpage{314} \item Fredholm operator with kernel $K$, \hyperpage{307} \item free variables, \hyperpage{14} @@ -1019,12 +1012,14 @@ \item Fresnel integrals, \hyperpage{113} \item Frobenius endomorphism, \hyperpage{166} \item Fréchet, \hyperpage{212} + \item Fréchet derivative, \hyperpage{363} + \item Fréchet differentiable, \hyperpage{363} \item FTBS, \hyperpage{268} \item FTCS, \hyperpage{268} \item FTFS, \hyperpage{268} - \item Fubini, \hyperpage{344} + \item Fubini, \hyperpage{346} \item Fubini's theorem, \hyperpage{59}, \hyperpage{175}, - \hyperpage{300} + \hyperpage{299} \item Fubini's theorem for elementary regions, \hyperpage{59} \item full QR decomposition, \hyperpage{267} \item function, \hyperpage{7} @@ -1047,9 +1042,9 @@ \indexspace - \item Gagliardo, Nirengerg and Sobolev's inequality, \hyperpage{349} + \item Gagliardo, Nirengerg and Sobolev's inequality, \hyperpage{351} \item Galerkin approximation, \hyperpage{275} - \item Galerkin methods, \hyperpage{369} + \item Galerkin methods, \hyperpage{377} \item Galois, \hyperpage{168} \item Galois extension, \hyperpage{168} \item Galois group, \hyperpage{166} @@ -1086,42 +1081,40 @@ \item generalized eigenvector, \hyperpage{128} \item generalized heat kernel, \hyperpage{286} \item Generalized Hölder's inequality, \hyperpage{237} - \item generalized Itô integral, \hyperpage{376} + \item generalized Itô integral, \hyperpage{384} \item generalized solution, \hyperpage{245} \item generating set, \hyperpage{16} - \item Generator, \hyperpage{380} - \item generator, \hyperpage{380} + \item Generator, \hyperpage{388} + \item generator, \hyperpage{388} \item generator tree, \hyperpage{50} \item generatrix, \hyperpage{147} \item genus $g$ orientable surface, \hyperpage{217} \item genus $h$ non-orientable surface, \hyperpage{217} \item geodesic, \hyperpage{153} \item geodesic curvature, \hyperpage{153} - \item Geometric Brownian motion, \hyperpage{380} + \item Geometric Brownian motion, \hyperpage{388} \item Geometric distribution, \hyperpage{177} \item geometric distribution, \hyperpage{177} \item geometric multiplicity, \hyperpage{20} \item Gershgorin circle theorem, \hyperpage{92} - \item Giranov's theorem, \hyperpage{379} + \item Giranov's theorem, \hyperpage{387} \item Glide orthogonal reflections, \hyperpage{73} \item glide reflection, \hyperpage{72} \item glide vector, \hyperpage{73} \item Global Gau\ss -Bonnet theorem, \hyperpage{160} - \item global interpolant, \hyperpage{368} - \item Global interpolation error, \hyperpage{369} + \item global interpolant, \hyperpage{376} + \item Global interpolation error, \hyperpage{377} \item global maximum, \hyperpage{57} \item global minimum, \hyperpage{57} \item global stable manifold, \hyperpage{222} \item global truncation error, \hyperpage{258} \item global unstable manifold, \hyperpage{222} - \item globally smooth, \hyperpage{369} + \item globally smooth, \hyperpage{377} \item Goodness of fit, \hyperpage{200} \item Goursat's theorem, \hyperpage{112} \item Gra\ss mann formula, \hyperpage{16}, \hyperpage{67} \item gradient, \hyperpage{56} \item Gradient descent, \hyperpage{264} - \item Gradient descent algorithm, \hyperpage{351} - \item gradient descent algorithm, \hyperpage{351} \item gradient vector field, \hyperpage{61} \item Gram-Schmidt process, \hyperpage{23}, \hyperpage{313} \item graph, \hyperpage{49}, \hyperpage{55}, \hyperpage{227} @@ -1133,12 +1126,14 @@ \item Green's formula, \hyperpage{159} \item Green's theorem, \hyperpage{62} \item grid, \hyperpage{268} - \item Gronwall's lemma, \hyperpage{379} + \item Gronwall's lemma, \hyperpage{387} \item Group, \hyperpage{37} \item group, \hyperpage{37} \item Group morphism, \hyperpage{38} \item group morphism, \hyperpage{38} \item Grönwall's lemma, \hyperpage{129} + \item Gâteaux derivative, \hyperpage{363} + \item Gâteaux differentiable, \hyperpage{363} \indexspace @@ -1162,7 +1157,6 @@ \item heat flux, \hyperpage{278} \item heat kernel, \hyperpage{285} \item Heaviside step function, \hyperpage{242}, \hyperpage{285} - \item Heavy ball method, \hyperpage{352} \item Heine's theorem, \hyperpage{55} \item Heine-Borel theorem, \hyperpage{214} \item Hermite interpolation problem, \hyperpage{94} @@ -1173,17 +1167,17 @@ \item high-leverage point, \hyperpage{255} \item high-leverage points, \hyperpage{255} \item highest posterior density, \hyperpage{204} - \item Hilbert basis, \hyperpage{313} + \item Hilbert basis, \hyperpage{312} \item Hilbert field, \hyperpage{64} \item Hilbert plane, \hyperpage{64} - \item Hilbert space, \hyperpage{311} + \item Hilbert space, \hyperpage{310} \item Hilbert transform, \hyperpage{247} \item Hilbert's basis theorem, \hyperpage{43} \item Hilbert's Nullstellensatz, \hyperpage{45} \item Hilbert-Schmidt operator with kernel $K$, \hyperpage{307} \item Hilbert-Schmidt spectral representation theorem, - \hyperpage{314} - \item hitting time, \hyperpage{372} + \hyperpage{313} + \item hitting time, \hyperpage{380} \item holding times, \hyperpage{327} \item holes, \hyperpage{216} \item holomorphic, \hyperpage{109} @@ -1201,7 +1195,7 @@ \item homogeneous of degree $k$, \hyperpage{221} \item homogeneous of degree $r\in \ensuremath {\mathbb {R}}$, \hyperpage{245} - \item homogeneous SDE, \hyperpage{380} + \item homogeneous SDE, \hyperpage{388} \item Homogenization, \hyperpage{74} \item homogenization, \hyperpage{70} \item homography, \hyperpage{67} @@ -1211,7 +1205,7 @@ \item homotopic, \hyperpage{139} \item homotopy, \hyperpage{139} \item Hopf bifurcation theorem, \hyperpage{226} - \item Hopf's lemma, \hyperpage{358} + \item Hopf's lemma, \hyperpage{360} \item Hopf-bifurcation, \hyperpage{226} \item Hurwitz's theorem, \hyperpage{119} \item hyperbolic, \hyperpage{268}, \hyperpage{273} @@ -1232,8 +1226,8 @@ \item hypothesis test, \hyperpage{199} \item Hölder condition, \hyperpage{247} \item Hölder conjugates, \hyperpage{302} - \item Hölder continuity, \hyperpage{349} - \item Hölder's inequality, \hyperpage{302, 303} + \item Hölder continuity, \hyperpage{351} + \item Hölder's inequality, \hyperpage{302} \indexspace @@ -1249,12 +1243,11 @@ \item Immersion, \hyperpage{146} \item immersion, \hyperpage{146} \item implicit, \hyperpage{258} - \item implicit descent, \hyperpage{352} \item implicit Euler method, \hyperpage{258} \item implicit form, \hyperpage{122} \item Implicit function theorem, \hyperpage{57} \item Implicit scheme in finite differences, \hyperpage{286} - \item importance sampling estimator, \hyperpage{362} + \item importance sampling estimator, \hyperpage{370} \item improper, \hyperpage{37}, \hyperpage{203} \item improper integral, \hyperpage{79} \item in perspective with respect to a line, \hyperpage{68} @@ -1291,7 +1284,6 @@ \item infinite product topology, \hyperpage{209} \item infinitesimal generator, \hyperpage{328} \item infinitesimal transition scheme, \hyperpage{328} - \item Infinte horizon problem, \hyperpage{383} \item inflection point, \hyperpage{31} \item Information, \hyperpage{256} \item information of an event, \hyperpage{256} @@ -1304,7 +1296,7 @@ \item injective, \hyperpage{7} \item inner product, \hyperpage{24}, \hyperpage{82}, \hyperpage{310} \item Inner regularity, \hyperpage{357} - \item insphere diameter, \hyperpage{368} + \item insphere diameter, \hyperpage{376} \item integrable, \hyperpage{32}, \hyperpage{182, 183} \item integrable function, \hyperpage{59} \item integrable function over $E$, \hyperpage{297} @@ -1320,7 +1312,7 @@ \item integral of $f$ over a measurable set $E\subseteq \ensuremath {\mathbb {R}}^n$, \hyperpage{296} \item integral of $f$ over the region $R$, \hyperpage{148} - \item integral of $f$ with respect to $\mu $, \hyperpage{344} + \item integral of $f$ with respect to $\mu $, \hyperpage{346} \item integral of $s$ over $\ensuremath {\mathbb {R}}^n$, \hyperpage{295} \item integral of $s$ over a measurable set $E$, \hyperpage{295} @@ -1332,15 +1324,15 @@ \item inter-arrival times, \hyperpage{327} \item Interior, \hyperpage{206} \item interior, \hyperpage{54}, \hyperpage{206} - \item interior ball condition, \hyperpage{358} + \item interior ball condition, \hyperpage{360} \item interior point, \hyperpage{54}, \hyperpage{157}, \hyperpage{207} \item interior product, \hyperpage{156} \item Intermediate value theorem, \hyperpage{28}, \hyperpage{55}, \hyperpage{94}, \hyperpage{215} \item internally studentized residuals, \hyperpage{254} - \item interpolant, \hyperpage{369, 370} - \item Interpolation inequality, \hyperpage{303} + \item interpolant, \hyperpage{377, 378} + \item Interpolation inequality, \hyperpage{302} \item interpolation problem, \hyperpage{93} \item intersection, \hyperpage{6} \item interval, \hyperpage{291} @@ -1348,7 +1340,7 @@ \item Intervals for $\mu $ and $\sigma ^2$, \hyperpage{198} \item invariance level, \hyperpage{71} \item Invariance of the MLE, \hyperpage{195} - \item Invariance under time shift, \hyperpage{380} + \item Invariance under time shift, \hyperpage{388} \item invariant, \hyperpage{131}, \hyperpage{339, 340} \item invariant algebraic curve, \hyperpage{135} \item invariant subspace, \hyperpage{21} @@ -1379,7 +1371,7 @@ \item isolated singularity, \hyperpage{116}, \hyperpage{160} \item isometric, \hyperpage{23} \item isometry, \hyperpage{23}, \hyperpage{74}, \hyperpage{148}, - \hyperpage{374} + \hyperpage{382} \item isomorphic, \hyperpage{17}, \hyperpage{38}, \hyperpage{50}, \hyperpage{306} \item isomorphism, \hyperpage{38} @@ -1389,11 +1381,11 @@ \item iteration matrix, \hyperpage{99} \item itinerary, \hyperpage{230} \item Itinerary lemma, \hyperpage{229} - \item Itô integral, \hyperpage{376} - \item Itô isometry, \hyperpage{376} - \item Itô process, \hyperpage{377} - \item Itô term, \hyperpage{378} - \item Itô's formula, \hyperpage{378}, \hyperpage{382} + \item Itô integral, \hyperpage{384} + \item Itô isometry, \hyperpage{384} + \item Itô process, \hyperpage{385} + \item Itô term, \hyperpage{386} + \item Itô's formula, \hyperpage{386} \item ivp, \hyperpage{122} \indexspace @@ -1403,13 +1395,13 @@ \item Jacobian determinant, \hyperpage{55} \item Jacobian matrix, \hyperpage{55} \item Jeffrey's prior, \hyperpage{203} - \item Jensen's inequality, \hyperpage{236}, \hyperpage{345} + \item Jensen's inequality, \hyperpage{236}, \hyperpage{347} \item joint pdf, \hyperpage{180} \item joint pmf, \hyperpage{180} \item joint probability density function, \hyperpage{180} \item Joint probability mass function, \hyperpage{180} \item joint probability mass function, \hyperpage{180} - \item jointly Gaussian, \hyperpage{371} + \item jointly Gaussian, \hyperpage{379} \item Jordan arc, \hyperpage{61} \item Jordan block, \hyperpage{21} \item Jordan closed curve, \hyperpage{61} @@ -1431,10 +1423,9 @@ \item Kolmogorov system, \hyperpage{221} \item Kolmogorov's backward equation, \hyperpage{328} \item Kolmogorov's continuity theorem, \hyperpage{331} - \item Kolmogorov's equation, \hyperpage{380} + \item Kolmogorov's equation, \hyperpage{388} \item Kolmogorov's forward equation, \hyperpage{328} \item Kolmogorov's strong law of large numbers, \hyperpage{191} - \item Krasnoselskii-Mann's convergence theorem, \hyperpage{353} \item Kronecker delta, \hyperpage{19} \item Kronecker's lemma, \hyperpage{164} \item Kronecker's theorem, \hyperpage{167} @@ -1446,18 +1437,21 @@ \item L'H\^opital's rule, \hyperpage{30} \item lack of fit test, \hyperpage{254} \item Lagrange basis polynomials, \hyperpage{93} + \item Lagrange multiplier, \hyperpage{365} + \item Lagrange multipliers, \hyperpage{364, 365} + \item Lagrange multipliers in several variables, \hyperpage{365} \item Lagrange multipliers theorem, \hyperpage{58} \item Lagrange's interpolation problem, \hyperpage{93} \item Lagrange's theorem, \hyperpage{39} \item Laguerre polynomials, \hyperpage{96} \item Lamé coefficients, \hyperpage{277} - \item Langevin equation, \hyperpage{379} + \item Langevin equation, \hyperpage{387} \item Laplace equation, \hyperpage{140}, \hyperpage{288} \item Laplacian, \hyperpage{61} \item lattice of subgroups, \hyperpage{169} \item Laurent series, \hyperpage{117} \item Laurent series theorem, \hyperpage{117} - \item law of $X$, \hyperpage{345} + \item law of $X$, \hyperpage{347} \item Law of the iterated logarithm, \hyperpage{333} \item Law of total expectation, \hyperpage{186, 187}, \hyperpage{315} \item Law of total probability, \hyperpage{174}, \hyperpage{315} @@ -1493,7 +1487,7 @@ \item level set, \hyperpage{55} \item leverage, \hyperpage{253} \item levorotation, \hyperpage{145} - \item Levy's characterization of Brownian motion, \hyperpage{374} + \item Levy's characterization of Brownian motion, \hyperpage{382} \item lexicographic degree, \hyperpage{163} \item lexicographic order, \hyperpage{163} \item lift, \hyperpage{337} @@ -1558,8 +1552,8 @@ \item local equivalence, \hyperpage{132} \item local extremum, \hyperpage{30}, \hyperpage{57} \item Local Gau\ss -Bonnet theorem, \hyperpage{160} - \item local interpolant, \hyperpage{368} - \item Local interpolation error, \hyperpage{369} + \item local interpolant, \hyperpage{376} + \item Local interpolation error, \hyperpage{377} \item local isometry, \hyperpage{148} \item local maximum, \hyperpage{30}, \hyperpage{57} \item local minimum, \hyperpage{30}, \hyperpage{57} @@ -1568,7 +1562,7 @@ \item local transversal section, \hyperpage{132} \item local truncation error, \hyperpage{262} \item local truncation errors, \hyperpage{258} - \item localizing sequence, \hyperpage{373} + \item localizing sequence, \hyperpage{381} \item locally, \hyperpage{214} \item locally bounded, \hyperpage{121}, \hyperpage{304} \item locally compact, \hyperpage{214} @@ -1586,7 +1580,7 @@ \item Logarithmic test, \hyperpage{76} \item logistic map, \hyperpage{228} \item logit, \hyperpage{257} - \item Longstaff-Schwartz method, \hyperpage{366} + \item Longstaff-Schwartz method, \hyperpage{374} \item loop, \hyperpage{49}, \hyperpage{215} \item Lorenz system, \hyperpage{228} \item loss function, \hyperpage{203} @@ -1600,7 +1594,7 @@ \item LU decomposition, \hyperpage{102} \item LU descompostion, \hyperpage{102} \item Lyapunov central limit theorem, \hyperpage{192} - \item Lyapunov exponent, \hyperpage{336} + \item Lyapunov exponent, \hyperpage{337} \item Lyapunov function, \hyperpage{137} \item Lyapunov stable, \hyperpage{137} \item Lyapunov's method, \hyperpage{226} @@ -1622,11 +1616,11 @@ \item marginal probability mass functions, \hyperpage{180} \item Markov chain, \hyperpage{318} \item Markov property, \hyperpage{318} - \item Markov property for Brownian motion, \hyperpage{371} + \item Markov property for Brownian motion, \hyperpage{379} \item Markov's inequality, \hyperpage{185} - \item Martingale, \hyperpage{371} - \item martingale, \hyperpage{346}, \hyperpage{371} - \item martingale term, \hyperpage{377} + \item Martingale, \hyperpage{379} + \item martingale, \hyperpage{348}, \hyperpage{379} + \item martingale term, \hyperpage{385} \item material derivative operator, \hyperpage{277} \item Matrix, \hyperpage{13} \item matrix, \hyperpage{13}, \hyperpage{18} @@ -1655,21 +1649,21 @@ \item Mean value theorem for vector-valued functions, \hyperpage{56} \item mean vector, \hyperpage{181}, \hyperpage{196} \item measurable, \hyperpage{175}, \hyperpage{293, 294}, - \hyperpage{344} - \item measurable space, \hyperpage{344} - \item Measure, \hyperpage{291}, \hyperpage{344} - \item measure, \hyperpage{174}, \hyperpage{291}, \hyperpage{344} - \item measure of $A$, \hyperpage{340} - \item measure of $U$, \hyperpage{340} + \hyperpage{346} + \item measurable space, \hyperpage{346} + \item Measure, \hyperpage{291}, \hyperpage{346} + \item measure, \hyperpage{174}, \hyperpage{291}, \hyperpage{346} + \item measure of $A$, \hyperpage{341} + \item measure of $U$, \hyperpage{341} \item measure on $\mathcal {C}(\ensuremath {\mathbb {T}}^1)$, \hyperpage{339} - \item measure space, \hyperpage{175}, \hyperpage{344} + \item measure space, \hyperpage{175}, \hyperpage{346} \item Melnikov's method, \hyperpage{227} \item memoryless, \hyperpage{177, 178} \item meromorphic, \hyperpage{118} - \item Mersenne Twister algorithm, \hyperpage{360} + \item Mersenne Twister algorithm, \hyperpage{368} \item Mesh, \hyperpage{275} - \item mesh, \hyperpage{275}, \hyperpage{372} + \item mesh, \hyperpage{275}, \hyperpage{380} \item mesh-points, \hyperpage{258} \item Method of characteristics, \hyperpage{279} \item Method of moments, \hyperpage{194} @@ -1677,7 +1671,7 @@ \item metric space, \hyperpage{53}, \hyperpage{205}, \hyperpage{300} \item metrizable, \hyperpage{187}, \hyperpage{212} \item Meusnier's theorem, \hyperpage{150} - \item minimal, \hyperpage{221}, \hyperpage{340} + \item minimal, \hyperpage{221}, \hyperpage{341} \item minimal element, \hyperpage{9} \item minimal polynomial, \hyperpage{20} \item minimal surface, \hyperpage{149} @@ -1707,16 +1701,17 @@ \item moment-generating function, \hyperpage{186} \item monic, \hyperpage{11} \item Monotone convergence theorem, \hyperpage{184}, \hyperpage{296}, - \hyperpage{344} + \hyperpage{346} \item monotonic, \hyperpage{26}, \hyperpage{28} \item monotonically decreasing, \hyperpage{26} \item monotonically increasing, \hyperpage{26} - \item Montecarlo estimator, \hyperpage{360} + \item Montecarlo estimator, \hyperpage{368} \item Montel's theorem, \hyperpage{121} \item more efficient than, \hyperpage{194} \item Morera's theorem, \hyperpage{114} \item morphism of field extensions, \hyperpage{165} - \item Morrey's embedding, \hyperpage{349} + \item Morrey's embedding, \hyperpage{351} + \item Mountain pass theorem, \hyperpage{366} \item MSE, \hyperpage{194} \item multi-index notation, \hyperpage{57} \item multicollinearity, \hyperpage{255} @@ -1725,14 +1720,13 @@ \item Multinomial distrbution, \hyperpage{180} \item multinomial distribution, \hyperpage{180} \item multiple, \hyperpage{10} - \item multiple control variate estimator, \hyperpage{362} + \item multiple control variate estimator, \hyperpage{370} \item multiple edges, \hyperpage{49} \item Multiple shooting method, \hyperpage{264} \item multiple shooting method, \hyperpage{264} \item multiplicative group, \hyperpage{43} \item multiplicity, \hyperpage{114} \item multistep, \hyperpage{268} - \item multistep method, \hyperpage{352} \item multivalued function, \hyperpage{104} \item multivariate cdf, \hyperpage{181} \item multivariate cumulative distribution function, \hyperpage{181} @@ -1750,17 +1744,17 @@ \indexspace - \item naive approach, \hyperpage{365} + \item naive approach, \hyperpage{373} \item Nart-Vila theorem, \hyperpage{171} \item Natural cubic spline, \hyperpage{94} - \item natural filtration, \hyperpage{371} + \item natural filtration, \hyperpage{379} \item Navier-Cauchy equation, \hyperpage{277} \item negation, \hyperpage{8} \item negative, \hyperpage{141} \item negative basis, \hyperpage{142} \item Negative binomial distribution, \hyperpage{178} \item negative binomial distribution, \hyperpage{178} - \item negative orbit, \hyperpage{339} + \item negative orbit, \hyperpage{340} \item negative part, \hyperpage{77} \item negative semi-orbit, \hyperpage{130} \item negative-definite, \hyperpage{23} @@ -1770,16 +1764,14 @@ \item negatively rotated, \hyperpage{227} \item negatively stable, \hyperpage{131} \item negatively-oriented, \hyperpage{142} + \item Nehari manifold method, \hyperpage{365} \item neighbourhood, \hyperpage{25}, \hyperpage{54}, \hyperpage{207} - \item Nesterov's accelerated gradient method, \hyperpage{352} - \item Nesterov's method, \hyperpage{352} \item Neumann, \hyperpage{274} \item Neumann boundary condition, \hyperpage{354} - \item Neumann boundary conditions, \hyperpage{367} - \item Neumann series, \hyperpage{308} + \item Neumann boundary conditions, \hyperpage{375} + \item Neumann series, \hyperpage{307} \item Neville's algorithm, \hyperpage{93} - \item Newton method, \hyperpage{262}, \hyperpage{264}, - \hyperpage{352} + \item Newton method, \hyperpage{262}, \hyperpage{264} \item Newton's divided differences\\method, \hyperpage{93} \item Newton-Raphson method, \hyperpage{90} \item Newton-Raphson modified method, \hyperpage{90} @@ -1805,7 +1797,6 @@ \item non-singular, \hyperpage{131} \item non-wandering, \hyperpage{340} \item noncommutative ring, \hyperpage{42} - \item nonexpansive, \hyperpage{352} \item nonsingular, \hyperpage{22} \item norm, \hyperpage{24}, \hyperpage{53}, \hyperpage{94}, \hyperpage{300}, \hyperpage{305} @@ -1830,7 +1821,7 @@ \item normed vector space, \hyperpage{53}, \hyperpage{300} \item not integrable, \hyperpage{182} \item not orientation-preserving, \hyperpage{217} - \item Novikov's condition, \hyperpage{378} + \item Novikov's condition, \hyperpage{386} \item null hypothesis, \hyperpage{199} \item null recurrent, \hyperpage{324} \item null set, \hyperpage{174}, \hyperpage{293} @@ -1851,6 +1842,7 @@ \item odds, \hyperpage{257} \item ode, \hyperpage{122} \item Olinde Rodrigues' theorem, \hyperpage{150} + \item omega limit, \hyperpage{340} \item one-parameter family of rotated vector fields, \hyperpage{227} \item One-point compactification, \hyperpage{214} \item one-point compactification, \hyperpage{214} @@ -1866,10 +1858,9 @@ \item Open mapping theorem, \hyperpage{116}, \hyperpage{309} \item open sets, \hyperpage{205} \item operator, \hyperpage{124}, \hyperpage{305} - \item Opial's lemma, \hyperpage{352} \item opposite orientations, \hyperpage{142}, \hyperpage{217} \item orbit, \hyperpage{8}, \hyperpage{40}, \hyperpage{130}, - \hyperpage{339} + \hyperpage{340} \item Orbit linear structure, \hyperpage{8} \item Orbit structure, \hyperpage{8} \item Orbit-stabilizer theorem, \hyperpage{40} @@ -1907,12 +1898,12 @@ \item orthogonal projection, \hyperpage{23} \item orthogonal projection on $F$, \hyperpage{311} \item orthogonal reflections, \hyperpage{73} - \item orthogonal system, \hyperpage{313} + \item orthogonal system, \hyperpage{312} \item orthogonal with respect to the weight $\omega (x)$, \hyperpage{96} - \item Orthogonality of martingales, \hyperpage{372} + \item Orthogonality of martingales, \hyperpage{380} \item orthonormal, \hyperpage{22}, \hyperpage{82} - \item orthonormal system, \hyperpage{82}, \hyperpage{313} + \item orthonormal system, \hyperpage{82}, \hyperpage{312} \item orthonormalization, \hyperpage{313} \item osculating circle, \hyperpage{144} \item Osculating plane, \hyperpage{143} @@ -1924,6 +1915,8 @@ \indexspace + \item Palais-Smale condition at level $c$, \hyperpage{366} + \item Palais-Smale sequence, \hyperpage{366} \item Paley-Wiener-Zygmund theorem, \hyperpage{331} \item Pappus configuration, \hyperpage{68} \item PAQ reduction theorem, \hyperpage{14} @@ -1933,7 +1926,7 @@ \item parabolic point, \hyperpage{150} \item parallel, \hyperpage{70}, \hyperpage{152} \item parallel transport, \hyperpage{152} - \item Parallelogram law, \hyperpage{53}, \hyperpage{311} + \item Parallelogram law, \hyperpage{53}, \hyperpage{310} \item parameter set, \hyperpage{316} \item parameter space, \hyperpage{193} \item parametric, \hyperpage{193} @@ -1949,7 +1942,7 @@ \item partial differential equation, \hyperpage{139} \item Partial fraction decomposition theorem, \hyperpage{117} \item partial inverse Fourier transform, \hyperpage{233} - \item partial isometry, \hyperpage{374} + \item partial isometry, \hyperpage{382} \item partial order relation, \hyperpage{9} \item Partial pivoting, \hyperpage{102} \item partially ordered set, \hyperpage{9} @@ -2010,12 +2003,12 @@ \item Poincaré index formula, \hyperpage{139} \item Poincaré inequality, \hyperpage{289} \item Poincaré map, \hyperpage{136} - \item Poincaré's inequality, \hyperpage{348} + \item Poincaré's inequality, \hyperpage{350} \item Poincaré's method, \hyperpage{226} \item Poincaré-Bendixson theorem, \hyperpage{136} \item Poincaré-Hopf theorem, \hyperpage{139}, \hyperpage{161} \item Poincaré-Hopf theorem on $S^2$, \hyperpage{139} - \item Poincaré-Wirtinger's inequality, \hyperpage{348} + \item Poincaré-Wirtinger's inequality, \hyperpage{350} \item points, \hyperpage{63}, \hyperpage{205} \item points of the quadric, \hyperpage{73} \item pointwise bounded, \hyperpage{125}, \hyperpage{304} @@ -2027,7 +2020,7 @@ \item Poisson summation formula, \hyperpage{238}, \hyperpage{240} \item Polar form, \hyperpage{108} \item polar form, \hyperpage{108} - \item Polar method, \hyperpage{361} + \item Polar method, \hyperpage{369} \item Polarization identity, \hyperpage{310} \item Pole, \hyperpage{116} \item pole, \hyperpage{116} @@ -2046,7 +2039,7 @@ \item poset, \hyperpage{9} \item positive, \hyperpage{141}, \hyperpage{158} \item positive basis, \hyperpage{142} - \item positive orbit, \hyperpage{339} + \item positive orbit, \hyperpage{340} \item positive part, \hyperpage{77} \item positive recurrent, \hyperpage{324} \item positive semi-orbit, \hyperpage{130} @@ -2070,13 +2063,14 @@ \item power series, \hyperpage{78} \item power set, \hyperpage{6} \item pre-Hilbert space, \hyperpage{310} + \item precompact, \hyperpage{357} \item predicate, \hyperpage{6} \item prediction, \hyperpage{253} \item prediction band, \hyperpage{254} \item preditions, \hyperpage{250} \item preimage, \hyperpage{7} \item preserves orientation, \hyperpage{337} - \item price of an American option, \hyperpage{365} + \item price of an American option, \hyperpage{373} \item primal, \hyperpage{51} \item prime, \hyperpage{10}, \hyperpage{12}, \hyperpage{44} \item Prime number theorem, \hyperpage{10} @@ -2097,18 +2091,18 @@ \item prior distribution, \hyperpage{202} \item probability, \hyperpage{173} \item probability density function, \hyperpage{178} - \item probability kernel, \hyperpage{346} + \item probability kernel, \hyperpage{348} \item Probability mass function, \hyperpage{176} \item probability mass function, \hyperpage{176} \item probability measure, \hyperpage{339} - \item probability space, \hyperpage{173}, \hyperpage{345} + \item probability space, \hyperpage{173}, \hyperpage{347} \item probability-generating function, \hyperpage{316} \item product, \hyperpage{11}, \hyperpage{13}, \hyperpage{106} - \item Product measure, \hyperpage{344} - \item product measure, \hyperpage{344} + \item Product measure, \hyperpage{346} + \item product measure, \hyperpage{346} \item product topology, \hyperpage{209} \item products of group subsets, \hyperpage{40} - \item progressive, \hyperpage{375} + \item progressive, \hyperpage{383} \item projection, \hyperpage{71} \item Projection theorem, \hyperpage{311} \item Projections, \hyperpage{71} @@ -2150,8 +2144,8 @@ \item Quadratic loss function, \hyperpage{203} \item quadratic polynomial, \hyperpage{162} \item quadratic space, \hyperpage{74} - \item Quadratic variation, \hyperpage{372} - \item quadratic variation, \hyperpage{377} + \item Quadratic variation, \hyperpage{380} + \item quadratic variation, \hyperpage{385} \item quadrature formula, \hyperpage{95} \item quadrature formula with weight $\omega (x)$, \hyperpage{97} \item quadric, \hyperpage{73} @@ -2165,7 +2159,7 @@ \item quotient group, \hyperpage{39} \item quotient map, \hyperpage{210} \item quotient space, \hyperpage{17}, \hyperpage{210}, - \hyperpage{302} + \hyperpage{301} \item quotient space of collapsing a set to a point, \hyperpage{211} \item quotient topology, \hyperpage{210} @@ -2179,10 +2173,10 @@ \item radius of curvature, \hyperpage{144} \item radix-2 decimation-in-time (DIT) FFT, \hyperpage{240} \item Radix-2 DIT Cooley-Tukey FFT algorithm, \hyperpage{240} - \item Radon-Nikodym, \hyperpage{345} + \item Radon-Nikodym, \hyperpage{347} \item Radó theorem, \hyperpage{218} \item random sample, \hyperpage{193} - \item Random variable, \hyperpage{345} + \item Random variable, \hyperpage{347} \item random variable, \hyperpage{175} \item random vector, \hyperpage{179} \item Random walk, \hyperpage{319} @@ -2226,13 +2220,13 @@ \item Regula falsi method, \hyperpage{90} \item regular, \hyperpage{49}, \hyperpage{58}, \hyperpage{131}, \hyperpage{141}, \hyperpage{195, 196}, \hyperpage{212}, - \hyperpage{328}, \hyperpage{369} + \hyperpage{328}, \hyperpage{377} \item regular distributions, \hyperpage{241} \item regular domain, \hyperpage{148} \item regular region, \hyperpage{160} \item regular surface, \hyperpage{147} \item Regularity up to the boundary, \hyperpage{357} - \item Reillich-Kondrachov's compactness theorem, \hyperpage{350} + \item Reillich-Kondrachov's compactness theorem, \hyperpage{352} \item Related samples with unknown variances, \hyperpage{199} \item relative condition numbers, \hyperpage{90} \item relative error, \hyperpage{89} @@ -2250,7 +2244,7 @@ \item residuals, \hyperpage{250} \item residue, \hyperpage{116} \item Residues theorem, \hyperpage{117} - \item resolvent set, \hyperpage{356} + \item resolvent set, \hyperpage{357} \item response, \hyperpage{253} \item restrictions, \hyperpage{51} \item Reuter criterion, \hyperpage{330} @@ -2278,20 +2272,20 @@ \item ring, \hyperpage{42} \item Ring morphism, \hyperpage{43} \item ring morphism, \hyperpage{43} - \item risk-free interest rate, \hyperpage{365} + \item risk-free interest rate, \hyperpage{373} \item RK methods, \hyperpage{260} \item Robin, \hyperpage{274} - \item Robin boundary conditions, \hyperpage{367} - \item Rogers's lemma, \hyperpage{366} + \item Robin boundary conditions, \hyperpage{375} + \item Rogers's lemma, \hyperpage{374} \item Rolle's theorem, \hyperpage{30} - \item Romberg Extrapolation, \hyperpage{363} + \item Romberg Extrapolation, \hyperpage{371} \item Romberg method, \hyperpage{96} \item root, \hyperpage{12} \item root condition, \hyperpage{262} \item root of the reflection, \hyperpage{71} \item Root test, \hyperpage{26}, \hyperpage{76} \item rotation, \hyperpage{119} - \item rotation number, \hyperpage{338} + \item rotation number, \hyperpage{338, 339} \item Rouché's theorem, \hyperpage{119} \item Rouché-Frobenius theorem, \hyperpage{14} \item Routh-Hurwitz stability criterion, \hyperpage{227} @@ -2302,7 +2296,6 @@ \item ruled surface, \hyperpage{151} \item Runge's phenomenon, \hyperpage{94} \item Runge-Kutta-Fehlberg method, \hyperpage{260} - \item running cost, \hyperpage{383} \indexspace @@ -2325,8 +2318,9 @@ \item SAS criterion, \hyperpage{63, 64} \item scalars, \hyperpage{15} \item scale, \hyperpage{179} - \item Schaefer fixed point, \hyperpage{359} - \item Schauder fixed point, \hyperpage{359} + \item Schaefer fixed point, \hyperpage{361} + \item Schauder estimates, \hyperpage{359} + \item Schauder fixed point, \hyperpage{361} \item Schrödinger equation, \hyperpage{279} \item Schwartz space, \hyperpage{243} \item Schwarz lemma, \hyperpage{120} @@ -2336,7 +2330,7 @@ \item score function, \hyperpage{195} \item Score test, \hyperpage{202} \item score test, \hyperpage{202} - \item SDE, \hyperpage{379} + \item SDE, \hyperpage{387} \item Secant method, \hyperpage{90} \item secant-like method, \hyperpage{263} \item Second Borel-Cantelli lemma, \hyperpage{189} @@ -2347,13 +2341,13 @@ \item Second Sylow theorem, \hyperpage{41} \item section, \hyperpage{299} \item sectorial decomposition, \hyperpage{133} - \item seed, \hyperpage{360} + \item seed, \hyperpage{368} \item segment, \hyperpage{72} \item Segmented regression, \hyperpage{253} \item self-adjoint, \hyperpage{312} - \item self-conjugate, \hyperpage{304} + \item self-conjugate, \hyperpage{303} \item self-similar, \hyperpage{284} - \item semi-conjugate, \hyperpage{338} + \item semi-conjugate, \hyperpage{339} \item Semi-hyperbolic singular points classification theorem, \hyperpage{223} \item semi-stable, \hyperpage{136} @@ -2367,7 +2361,7 @@ \item Seminorm, \hyperpage{308} \item seminorm, \hyperpage{94}, \hyperpage{308} \item sensitive dependence on initial conditions, \hyperpage{230}, - \hyperpage{336} + \hyperpage{337} \item Separability theorem, \hyperpage{168} \item separable, \hyperpage{168}, \hyperpage{301} \item Separable extension, \hyperpage{168} @@ -2434,11 +2428,11 @@ \item Slutsky's theorem, \hyperpage{190} \item small change, \hyperpage{279} \item Sobolev space, \hyperpage{289} - \item Sobolev spaces, \hyperpage{348} + \item Sobolev spaces, \hyperpage{350} \item solution, \hyperpage{90}, \hyperpage{139} \item solution of a system of equations, \hyperpage{13} \item solution of the ODE, \hyperpage{122} - \item solution of the SDE, \hyperpage{379} + \item solution of the SDE, \hyperpage{387} \item solvable, \hyperpage{41}, \hyperpage{170} \item solvable by radicals, \hyperpage{170} \item SOR, \hyperpage{100} @@ -2446,11 +2440,11 @@ \item space of rapidly decreasing functions, \hyperpage{243} \item special orthogonal group, \hyperpage{145} \item specific heat capacity, \hyperpage{278} - \item spectral methods, \hyperpage{369} + \item spectral methods, \hyperpage{377} \item spectral radius, \hyperpage{98} \item Spectral theorem, \hyperpage{24}, \hyperpage{313} \item spectral values, \hyperpage{309} - \item spectrum, \hyperpage{97}, \hyperpage{309}, \hyperpage{356} + \item spectrum, \hyperpage{97}, \hyperpage{309}, \hyperpage{357} \item sphere, \hyperpage{54} \item Spline, \hyperpage{94} \item spline, \hyperpage{94} @@ -2464,7 +2458,7 @@ \item stability region, \hyperpage{261}, \hyperpage{268} \item stabilizer, \hyperpage{40} \item stable, \hyperpage{136}, \hyperpage{261}, \hyperpage{269}, - \hyperpage{274}, \hyperpage{328} + \hyperpage{273}, \hyperpage{328} \item stable degenerated node, \hyperpage{133} \item stable focus, \hyperpage{133} \item stable manifold, \hyperpage{222} @@ -2497,10 +2491,10 @@ \item stiff equations, \hyperpage{261} \item stiffness matrix, \hyperpage{276} \item Stirling's formula, \hyperpage{81} - \item stochastic differential, \hyperpage{377} - \item stochastic differential equation, \hyperpage{379} - \item Stochastic dominated convergence theorem, \hyperpage{376} - \item Stochastic integration by parts, \hyperpage{378} + \item stochastic differential, \hyperpage{385} + \item stochastic differential equation, \hyperpage{387} + \item Stochastic dominated convergence theorem, \hyperpage{384} + \item Stochastic integration by parts, \hyperpage{386} \item Stochastic matrix, \hyperpage{318} \item stochastic matrix, \hyperpage{318} \item Stochastic process, \hyperpage{316} @@ -2510,8 +2504,8 @@ \item Stokes' theorem, \hyperpage{62} \item Stolz-Cesàro theorem, \hyperpage{27} \item Stone-Weierstra\ss \ theorem, \hyperpage{304} - \item stopped process, \hyperpage{346}, \hyperpage{372} - \item stopping time, \hyperpage{321}, \hyperpage{346} + \item stopped process, \hyperpage{348}, \hyperpage{380} + \item stopping time, \hyperpage{321}, \hyperpage{348} \item strict Lyapunov function, \hyperpage{137} \item strictly concave, \hyperpage{30} \item strictly convex, \hyperpage{30} @@ -2520,16 +2514,16 @@ \item strictly diagonally dominant by rows, \hyperpage{99} \item strictly increasing, \hyperpage{26}, \hyperpage{28} \item Strong duality theorem, \hyperpage{52} - \item Strong error of the Euler scheme, \hyperpage{363} + \item Strong error of the Euler scheme, \hyperpage{371} \item Strong law of large numbers, \hyperpage{191} \item Strong law of large numbers for Brownian motion, - \hyperpage{371} + \hyperpage{379} \item Strong Markov property, \hyperpage{321, 322} - \item Strong maximum principle, \hyperpage{358} + \item Strong maximum principle, \hyperpage{360} + \item Strong minimum principle, \hyperpage{360} \item strong solution, \hyperpage{354} \item strongly consistent estimator, \hyperpage{194} - \item strongly convex, \hyperpage{351} - \item strongly lower-semicontinuous, \hyperpage{347} + \item strongly lower-semicontinuous, \hyperpage{349} \item Structal stability, \hyperpage{336} \item Strum's sequence, \hyperpage{92} \item Student's $t$-distribution with $n$ degrees of freedom, @@ -2537,22 +2531,21 @@ \item Sturm's sequence, \hyperpage{92} \item Sturm's theorem, \hyperpage{92} \item Sturm-Picone comparison theorem, \hyperpage{283} - \item sub-martingale, \hyperpage{371} + \item sub-martingale, \hyperpage{379} \item sub-multiplicativity, \hyperpage{97} \item subadditive, \hyperpage{338} \item subalgebra, \hyperpage{303} \item subbasis, \hyperpage{206} \item subcover, \hyperpage{213} - \item subdivision, \hyperpage{368} + \item subdivision, \hyperpage{376} \item subfield generated, \hyperpage{163} - \item subgradient descent method, \hyperpage{352} \item Subgroup, \hyperpage{37} \item subgroup, \hyperpage{37} \item subgroup generated, \hyperpage{37} - \item sublinear, \hyperpage{306} + \item sublinear, \hyperpage{305} \item submanifold, \hyperpage{146} \item submanifold with boundary, \hyperpage{157} - \item submartingale, \hyperpage{346} + \item submartingale, \hyperpage{348} \item Submersion, \hyperpage{146} \item submersion, \hyperpage{146} \item subordinated matrix norm, \hyperpage{97} @@ -2575,13 +2568,16 @@ \hyperpage{107} \item sum of the series in an uniform sense, \hyperpage{78}, \hyperpage{107} - \item super-martingale, \hyperpage{371} + \item super-martingale, \hyperpage{379} \item superadditive, \hyperpage{338} - \item supermartingale, \hyperpage{346} + \item supermartingale, \hyperpage{348} + \item Superposition operator, \hyperpage{363} + \item superposition operator, \hyperpage{363} + \item superquadradicity condition, \hyperpage{366} \item support, \hyperpage{8}, \hyperpage{79}, \hyperpage{146}, \hyperpage{176}, \hyperpage{180}, \hyperpage{242} - \item support of $\mu $, \hyperpage{340} - \item support plane, \hyperpage{347} + \item support of $\mu $, \hyperpage{341} + \item support plane, \hyperpage{349} \item support points, \hyperpage{93} \item supremum, \hyperpage{25} \item Supremum axiom, \hyperpage{25} @@ -2617,7 +2613,7 @@ \item tangent line to the graph at the point $(x_0,f(x_0))$, \hyperpage{29} \item tangent plane, \hyperpage{147} - \item tangent process, \hyperpage{364} + \item tangent process, \hyperpage{372} \item tangent space, \hyperpage{147}, \hyperpage{156, 157} \item tangent vector, \hyperpage{141}, \hyperpage{147}, \hyperpage{156} @@ -2630,7 +2626,6 @@ \item Taylor's theorem, \hyperpage{57} \item tempered distribution, \hyperpage{244} \item tends to the boundary, \hyperpage{126} - \item terminal cost, \hyperpage{383} \item terminal point, \hyperpage{215} \item test, \hyperpage{200} \item test functions, \hyperpage{240} @@ -2679,9 +2674,9 @@ \item totally isotropic, \hyperpage{74} \item Tower formula, \hyperpage{165} \item tower of fields, \hyperpage{165} - \item Tower property, \hyperpage{346} + \item Tower property, \hyperpage{348} \item trace, \hyperpage{141}, \hyperpage{289} - \item trace operator, \hyperpage{350} + \item trace operator, \hyperpage{352} \item Trace theorem, \hyperpage{289} \item Traffic flow equation, \hyperpage{280} \item trail, \hyperpage{49} @@ -2704,14 +2699,14 @@ \item Trapezoidal rule, \hyperpage{95} \item traversable, \hyperpage{50} \item tree, \hyperpage{50} - \item trial functions, \hyperpage{369} + \item trial functions, \hyperpage{377} \item triangle, \hyperpage{160} \item Triangular inequality, \hyperpage{25}, \hyperpage{72} \item triangular inequality, \hyperpage{53}, \hyperpage{205}, \hyperpage{300} \item triangular system, \hyperpage{97} \item triangularization, \hyperpage{218} - \item triangulation, \hyperpage{368} + \item triangulation, \hyperpage{376} \item triple, \hyperpage{90} \item trivial $\sigma $-algebra, \hyperpage{172} \item Trivial topology, \hyperpage{206} @@ -2719,7 +2714,7 @@ \item truncated, \hyperpage{266} \item truncated Hilbert transform, \hyperpage{247} \item truncated singular value decomposition, \hyperpage{266} - \item Tsitsiklis-Van Roy method, \hyperpage{365} + \item Tsitsiklis-Van Roy method, \hyperpage{373} \item TSVD, \hyperpage{266} \item two times differentiable, \hyperpage{31} \item two times differentiable at $a$, \hyperpage{31} @@ -2746,11 +2741,11 @@ \item uniformly convergent, \hyperpage{117} \item uniformly elliptic, \hyperpage{354} \item uniformly equicontinuous, \hyperpage{125}, \hyperpage{304} - \item uniformly integrable, \hyperpage{346} + \item uniformly integrable, \hyperpage{348} \item uniformly most powerful, \hyperpage{200} \item union, \hyperpage{6} \item unique factorization domain, \hyperpage{45} - \item uniquely ergodic, \hyperpage{341} + \item uniquely ergodic, \hyperpage{342} \item Uniqueness of Dirichlet problem, \hyperpage{288} \item Uniqueness of the heat equation, \hyperpage{287} \item Uniqueness of the heat equation on the unbounded domains, @@ -2782,7 +2777,7 @@ \indexspace \item Van der Pol oscillator, \hyperpage{228} - \item vanishes nowhere, \hyperpage{304} + \item vanishes nowhere, \hyperpage{303} \item variable, \hyperpage{11} \item variables, \hyperpage{13} \item Variacions with repetition, \hyperpage{10} @@ -2821,14 +2816,15 @@ \item wave equation, \hyperpage{140} \item wave function, \hyperpage{279} \item Weak duality theorem, \hyperpage{51} - \item Weak error of the Euler scheme, \hyperpage{363} + \item Weak error of the Euler scheme, \hyperpage{371} \item weak formulation, \hyperpage{275}, \hyperpage{354} \item Weak law of large numbers, \hyperpage{190} - \item Weak maximum principle, \hyperpage{357, 358} + \item Weak maximum principle, \hyperpage{358, 359} + \item Weak minimum principle, \hyperpage{358}, \hyperpage{360} \item weak solution, \hyperpage{354} - \item weak-* lower-semicontinuity, \hyperpage{347} + \item weak-* lower-semicontinuity, \hyperpage{349} \item weakly consistent estimator, \hyperpage{194} - \item weakly lower-semicontinuity, \hyperpage{347} + \item weakly lower-semicontinuity, \hyperpage{349} \item Weierstra\ss ' theorem, \hyperpage{55}, \hyperpage{114}, \hyperpage{214} \item Weierstra\ss \ approximation theorem, \hyperpage{79} @@ -2841,13 +2837,15 @@ \item well-ordered set, \hyperpage{9} \item well-posed, \hyperpage{258} \item well-posed in the Hadamard sense, \hyperpage{258} - \item Wiener integral, \hyperpage{374} - \item Wiener isometry, \hyperpage{374} + \item Wiener integral, \hyperpage{382} + \item Wiener isometry, \hyperpage{382} \item Wiener process, \hyperpage{330} \item winding number, \hyperpage{113} \item Wintner lemma, \hyperpage{126} \item Wirtinger operators, \hyperpage{111} \item Wirtinger's inequality, \hyperpage{87, 88} + \item With constraints, \hyperpage{362} + \item Without constraints, \hyperpage{362}, \hyperpage{364} \item Witt's theorem, \hyperpage{74} \indexspace diff --git a/main_math.tex b/main_math.tex index e2f76bf..48ff31c 100644 --- a/main_math.tex +++ b/main_math.tex @@ -111,7 +111,10 @@ \chapter{Fifth year} \subfile{Mathematics/5th/Advanced_topics_in_functional_analysis_and_PDEs/Advanced_topics_in_functional_analysis_and_PDEs.tex} \cleardoublepage -\subfile{Mathematics/5th/Continuous_optimization/Continuous_optimization.tex} +% \subfile{Mathematics/5th/Continuous_optimization/Continuous_optimization.tex} +% \cleardoublepage + +\subfile{Mathematics/5th/Introduction_to_control_theory/Introduction_to_control_theory.tex} \cleardoublepage \subfile{Mathematics/5th/Introduction_to_nonlinear_elliptic_PDEs/Introduction_to_nonlinear_elliptic_PDEs.tex} @@ -126,8 +129,8 @@ \chapter{Fifth year} \subfile{Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex} \cleardoublepage -\subfile{Mathematics/5th/Stochastic_control/Stochastic_control.tex} -\cleardoublepage +% \subfile{Mathematics/5th/Stochastic_control/Stochastic_control.tex} +% \cleardoublepage \printindex diff --git a/preamble_general.sty b/preamble_general.sty index 4cdb307..01c9fb9 100644 --- a/preamble_general.sty +++ b/preamble_general.sty @@ -74,6 +74,7 @@ {NMPDE}{\apl} % Numerical methods for pdes {SCO}{\pro} % Stochastic control {JP}{\pro} % Jump processes + {ICT}{\ana} % Introduction to control theory }{\col}% } \ExplSyntaxOff