diff --git a/Mathematics/3rd/Probability/Probability.tex b/Mathematics/3rd/Probability/Probability.tex index 39d3eae..eb165da 100644 --- a/Mathematics/3rd/Probability/Probability.tex +++ b/Mathematics/3rd/Probability/Probability.tex @@ -125,10 +125,10 @@ \begin{proposition} Let $(\Omega,\mathcal{A},\Prob)$ be a probability space such that $\Omega$ is finite and all its elements are equiprobable. Let $A\in\mathcal{A}$ be an event. Then: $$\Prob(A)=\frac{|A|}{|\Omega|}$$ \end{proposition} - \begin{theorem}[Continuity from below] + \begin{theorem}[Continuity from below]\label{P:continuity_below} Let\\ $(\Omega,\mathcal{A},\Prob)$ be a probability space and $(A_n)\subset\mathcal{A}$ be an increasing sequence of events, that is: $$A_1\subseteq A_2\subseteq\cdots\subseteq A_n\subseteq\cdots$$ Let $A:=\bigcup_{n=1}^\infty A_n$. Then: $$\Prob(A)=\lim_{n\to\infty}\Prob(A_n)$$ \end{theorem} - \begin{corollary}[Continuity from above] + \begin{corollary}[Continuity from above]\label{P:continuity_above} Let $(\Omega,\mathcal{A},\Prob)$ be a probability space and $(A_n)\subset\mathcal{A}$ be a decreasing sequence of events, that is: $$A_1\supseteq A_2\supseteq\cdots\supseteq A_n\supseteq\cdots$$ Let $A:=\bigcap_{n=1}^\infty A_n$. Then: $$\Prob(A)=\lim_{n\to\infty}\Prob(A_n)$$ \end{corollary} \begin{proposition}[Countable subadditivity] @@ -1035,10 +1035,27 @@ Let $(\Omega,\mathcal{A},\Prob)$ be a probability space and $(A_n)\subset\mathcal{A}$ be a sequence of events such that: $$\sum_{n=1}^\infty\Prob(A_n)<\infty$$ Then, $\displaystyle\Prob\left(\limsup_{n\to\infty} A_n\right)=0$. \end{lemma} + \begin{proof} + Let $B_n:=\bigcup_{k\geq n}A_k$ and note that $B_{n+1}\subseteq B_n$. Thus, using the definition of $\limsup$ and \mnameref{P:continuity_above} we have that + $$ + \Prob\left(\limsup_{n\to\infty} A_n\right)=\lim_{n\to\infty}\Prob(B_n)\leq \lim_{n\to\infty}\sum_{k\geq n}\Prob(A_n)=0 + $$ + because it is the tail of a convergent sequence. + \end{proof} \begin{lemma}[Second Borel-Cantelli lemma] Let $(\Omega,\mathcal{A},\Prob)$ be a probability space and $(A_n)\subset\mathcal{A}$ be a sequence of independent events such that: $$\sum_{n=1}^\infty\Prob(A_n)=\infty$$ Then, $\displaystyle\Prob\left(\limsup_{n\to\infty} A_n\right)=1$. \end{lemma} + \begin{proof} + We will prove that $\displaystyle\Prob\left({\left[\limsup_{n\to\infty} A_n\right]}^c\right)=0$. From \mnameref{P:continuity_below}, if $B_n:= \bigcap_{k\geq n}{A_k}^c$ we have: + $$ + \Prob\left({\left[\limsup_{n\to\infty} A_n\right]}^c\right)=\lim_{n\to\infty}\Prob(B_n) + $$ + Now, $\forall N\geq n$ we have $\Prob(B_n)\leq \Prob\left(\bigcap_{k=n}^N{A_n}^c\right)$. Using the independence and the inequality $1+x\leq \exp{x}$, we get: + $$ + \Prob(B_n)\leq \prod_{k=n}^N(1-\Prob(A_n))\leq \exp{-\sum_{k=n}^{N}}\overset{N\to\infty}{\longrightarrow}0 + $$ + \end{proof} \subsubsection{Convergence in mean} \begin{definition} Let $(\Omega,\mathcal{A},\Prob)$ be a probability space, $p\geq 1$, $(X_n)$ be a sequence of random variables such that $\Exp({|X_n|}^p)<\infty$ and $X$ be a random variable such that $\Exp({|X|}^p)<\infty$. We say that $(X_n)$ \emph{converges in the $p$-th mean} to $X$, and we denote it by $X_n\overset{L^p}{\longrightarrow} X$, if $$\lim_{n\to\infty}\Exp({|X_n-X|}^p)=0$$ diff --git a/Mathematics/4th/Harmonic_analysis/Harmonic_analysis.tex b/Mathematics/4th/Harmonic_analysis/Harmonic_analysis.tex index b38b379..69186d9 100644 --- a/Mathematics/4th/Harmonic_analysis/Harmonic_analysis.tex +++ b/Mathematics/4th/Harmonic_analysis/Harmonic_analysis.tex @@ -449,6 +449,19 @@ \begin{proof} The first property follows from its definition. For the second one, if $\displaystyle f(x)\overset{L^2}{=}\lim_{n\to\infty}f_n(x)$, by \mnameref{HA:plancherel} we have $\norm{f_n}_2=\norm{\widehat{f}}_2$. Now use the continuity of the norm. For the other properties, take the function given in the proof of \mcref{HA:preDefFTinL2} and use the \mnameref{RFA:monotone}. \end{proof} + \begin{proposition}[Jensen's inequality] + Let $J:\RR\to\RR$ be a convex function, $f$ be a measurable function, and $\mu:\Omega\to\RR$ be measurable with $\int_\Omega\dd{\mu}=1$. Then: + $$ + \int_\Omega J(f)\dd{\mu}\geq J\left(\int_\Omega f\dd{\mu}\right) + $$ + \end{proposition} + \begin{sproof} + We assume differentiability on $J$ for simplicity. Since $J$ is convex we have that $\forall a,b\in\RR$: + $$J(b)\geq J(a)+J'(a)(b-a)$$ + Taking $a=\int_\Omega f\dd{\mu}$ and $b=f(x)$, we have: + $$J(f(x))\geq J\left(\int_\Omega f\dd{\mu}\right)+J'\left(\int_\Omega f\dd{\mu}\right)\!\!\left(f(x)-\int_\Omega f\dd{\mu}\right)$$ + Multiplying by $\dd{\mu}$ and integrating, yields the result. + \end{sproof} \begin{lemma}[Generalized Hölder's inequality]\label{HA:holderGeneralized} Let $E\subseteq\RR^n$ be a measurable set, $1\leq p_1,\ldots,p_n\leq \infty$ be such that $\sum_{i=1}^n\frac{1}{p_i}=1$ and ${f_i}\in L^{p_i}(E)$. Then: $$\norm{\prod_{i=1}^{n}f_i}_1\leq\prod_{i=1}^{n}\norm{{f_i}}_{p_i}$$ diff --git a/Mathematics/4th/Real_and_functional_analysis/Real_and_functional_analysis.tex b/Mathematics/4th/Real_and_functional_analysis/Real_and_functional_analysis.tex index e4c3df2..3f39133 100644 --- a/Mathematics/4th/Real_and_functional_analysis/Real_and_functional_analysis.tex +++ b/Mathematics/4th/Real_and_functional_analysis/Real_and_functional_analysis.tex @@ -481,7 +481,7 @@ \end{proposition} \begin{important} \begin{theorem}[Dominated convergence theorem]\label{RFA:dominated} - Let $E\subseteq\RR^n$ be a measurable set, $f$ be a measurable function over $E$ such that $\exists (f_m)\geq 0$ with $f_m\almoste{\rightarrow} f$ and $\abs{f_m(x)}\almoste\leq g(x)$ on $E$ with $g\in \mathcal{L}^1(E)$ $\forall m\in\NN$. Then, $f, f_m\in \mathcal{L}^1(E)$ $\forall m\in\NN$ and: $$\int_Ef(x)\dd{x}=\lim_{m\to\infty}\int_Ef_m(x)\dd{x}$$ + Let $E\subseteq\RR^n$ be a measurable set, $f$ be a measurable function over $E$ such that $\exists (f_m)$ measurable with $f_m\almoste{\rightarrow} f$ and $\abs{f_m(x)}\almoste\leq g(x)$ on $E$ with $g\in \mathcal{L}^1(E)$ $\forall m\in\NN$. Then, $f, f_m\in \mathcal{L}^1(E)$ $\forall m\in\NN$ and: $$\int_Ef(x)\dd{x}=\lim_{m\to\infty}\int_Ef_m(x)\dd{x}$$ \end{theorem} \end{important} \begin{proposition} @@ -843,6 +843,20 @@ $$\int_E\abs{f(x)g(x)}\dd{x}\leq\int_E\left(\frac{\abs{f(x)}^p}{p}+\frac{\abs{g(x)}^q}{q}\right)\dd{x}=\frac{1}{p}+\frac{1}{q}=1$$ The equality follows from the equality in \mnameref{RFA:young}. \end{proof} + \begin{corollary}[Hölder's inequality] + Let $E\subseteq\RR^n$ be a measurable set, $1\leq p,q, r\leq \infty$ be such that $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$ and ${f}\in L^p(E)$, ${g}\in L^q(E)$. Then, $fg\in L^r(E)$ and: + $$\norm{{fg}}_r\leq\norm{{f}}_p\norm{{g}}_q$$ + \end{corollary} + \begin{sproof} + Use \mnameref{RFA:holder} with $F:=\abs{f}^r\in L^{\frac{p}{r}}(E)$ and $G:=\abs{g}^r\in L^{\frac{q}{r}}(E)$, noting that $p/r$ and $q/r$ are Hölder conjugates. + \end{sproof} + \begin{corollary}[Interpolation inequality] + Let $E\subseteq\RR^n$ be a measurable set, $1\leq p_1\leq p_2\leq \infty$ and $f\in L^{p_1}(E)\cap L^{p_2}(E)$. Then, $\forall p\in[p_1,p_2]$ we have $f\in L^p(E)$ and: + $$ + \norm{f}_p\leq {\norm{f}_{p_1}}^\alpha{\norm{f}_{p_2}}^{1-\alpha} + $$ + with $\alpha\in[0,1]$ such that $\frac{1}{p}=\frac{\alpha}{p_1}+\frac{1-\alpha}{p_2}$. + \end{corollary} \begin{proposition}\label{RFA:lpnorm} Let $E\subseteq\RR^n$ be a measurable set and $1\leq p<\infty$. The set $L^p(E)$ is a normed vector space with the norm: $$\norm{{f}}_p:={\left(\int_E\abs{{f}}^p\right)}^{1/p}\qquad\forall{f}\in L^p(E)$$ And the set $L^\infty(E)$ is also a normed vector space with the norm: $$\norm{{f}}_\infty=\inf \{M:\abs{{f}(x)}\almoste{\leq} M, x\in E\}\qquad\forall{f}\in L^\infty(E)$$