diff --git a/.github/workflows/buildpdf.yml b/.github/workflows/buildpdf.yml index 5300680..6cd3807 100644 --- a/.github/workflows/buildpdf.yml +++ b/.github/workflows/buildpdf.yml @@ -185,8 +185,8 @@ jobs: - name: Compile - INEPDE uses: xu-cheng/latex-action@v2 with: - root_file: Introduction_to_non_linear_elliptic_PDEs.tex - working_directory: Mathematics/5th/Introduction_to_non_linear_elliptic_PDEs/ + root_file: Introduction_to_nonlinear_elliptic_PDEs.tex + working_directory: Mathematics/5th/Introduction_to_nonlinear_elliptic_PDEs/ - name: Compile - LTLD uses: xu-cheng/latex-action@v2 with: @@ -279,7 +279,7 @@ jobs: Mathematics/5th/Advanced_probability/Advanced_probability.pdf Mathematics/5th/Advanced_topics_in_functional_analysis_and_PDEs/Advanced_topics_in_functional_analysis_and_PDEs.pdf Mathematics/5th/Introduction_to_evolution_PDEs/Introduction_to_evolution_PDEs.pdf - Mathematics/5th/Introduction_to_non_linear_elliptic_PDEs/Introduction_to_non_linear_elliptic_PDEs.pdf + Mathematics/5th/Introduction_to_nonlinear_elliptic_PDEs/Introduction_to_nonlinear_elliptic_PDEs.pdf Mathematics/5th/Limit_theorems_and_large_deviations/Limit_theorems_and_large_deviations.pdf Mathematics/5th/Stochastic_calculus/Stochastic_calculus.pdf main_physics.pdf diff --git a/Mathematics/3rd/Probability/Probability.tex b/Mathematics/3rd/Probability/Probability.tex index 2fcc6d2..6e39d89 100644 --- a/Mathematics/3rd/Probability/Probability.tex +++ b/Mathematics/3rd/Probability/Probability.tex @@ -217,7 +217,7 @@ \item There exists $A\in\mathcal{E}$ such that $\mu(A)<\infty$. \item If $\{A_n\in\mathcal{E}:n\in\NN\}$ is a collection of pairwise disjoint sets, then: $$\mu\left(\bigcup_{n=1}^\infty A_n\right)=\sum_{n=1}^\infty \mu(A_n)$$ \end{enumerate} - The triplet $(E,\mathcal{E},\mu)$ is called a \emph{measurable space}. + The triplet $(E,\mathcal{E},\mu)$ is called a \emph{measure space}. \end{definition} \begin{definition} The \emph{$\sigma$-algebra of all Lebesgue measurable sets in $\RR^n$}, $\mathcal{L}_n\subset\mathcal{P}(\RR^n)$, is defined as: @@ -230,10 +230,10 @@ We can extend the concept of volume on rectangles in $\RR^n$ to all the elements in $\mathcal{L}_n$. This extension is called \emph{Lebesgue measure} (or simply \emph{volume}) in $\RR^n$. \end{theorem} \begin{definition} - Let $(E,\mathcal{E},\mu)$ be a measurable space and $f:E\rightarrow\RR$ be a function. We say that $f$ is \emph{measurable} if $\forall B\in\mathcal{B}(\RR)$ we have $f^{-1}(B)\in\mathcal{E}$. The \emph{Lebesgue integral} of $f$ over $E$ with respect to $\mu$ is denoted by: $$\int_Ef\dd\mu$$ + Let $(E,\mathcal{E},\mu)$ be a measure space and $f:E\rightarrow\RR$ be a function. We say that $f$ is \emph{measurable} if $\forall B\in\mathcal{B}(\RR)$ we have $f^{-1}(B)\in\mathcal{E}$. The \emph{Lebesgue integral} of $f$ over $E$ with respect to $\mu$ is denoted by: $$\int_Ef\dd\mu$$ \end{definition} \begin{proposition} - Let $(E,\mathcal{E},\mu)$ be a measurable space and $f:E\rightarrow\RR$ be a measurable function such that $f(x)\geq 0$ $\forall x\in E$. Then, we can always define the integral $$\int_Ef\dd\mu$$ taking into account that may be $+\infty$. + Let $(E,\mathcal{E},\mu)$ be a measure space and $f:E\rightarrow\RR$ be a measurable function such that $f(x)\geq 0$ $\forall x\in E$. Then, we can always define the integral $$\int_Ef\dd\mu$$ taking into account that may be $+\infty$. \end{proposition} \begin{definition} Let $(E,\mathcal{E},\mu)$ be a measurable space and $f:E\rightarrow\RR$ be a measurable function. We say that $f$ is \emph{Lebesgue integrable} with respect to $\mu$ if: $$\int_E|f|\dd\mu<\infty$$ diff --git a/Mathematics/4th/Dynamical_systems/Dynamical_systems.tex b/Mathematics/4th/Dynamical_systems/Dynamical_systems.tex index f2a3036..8c4e27a 100644 --- a/Mathematics/4th/Dynamical_systems/Dynamical_systems.tex +++ b/Mathematics/4th/Dynamical_systems/Dynamical_systems.tex @@ -201,15 +201,15 @@ The \emph{codimension} of a bifurcation is the number of parameters which must be varied for the bifurcation to occur. \end{definition} \begin{definition}[Saddle-node bifurcation] - The normal form of the codimension-one \emph{saddle-node bifurcation} is: $$x'=x^2+\mu$$ + The normal form of the codimension-one \emph{saddle-node bifurcation} is: $$x'=\mu+x^2$$ \mcref{DS:sn} shows the qualitative behavior of that system\footnote{In these images, the red lies means that the point $(\mu,x)$ is repelling. The blue lines means that the point $(\mu,x)$ is attracting.}. \end{definition} \begin{definition}[Transcritical bifurcation] - The normal form of the codimension-one \emph{transcritical bifurcation} is: $$x'=x^2+\mu x$$ + The normal form of the codimension-one \emph{transcritical bifurcation} is: $$x'=\mu x+x^2$$ \mcref{DS:trans} shows a qualitative behavior of the stability of the equilibria. \end{definition} \begin{definition}[Pitchfork bifurcation] - The normal form of the codimension-one \emph{pitchfork bifurcation} is: $$x'=x^3+\mu x$$ + The normal form of the codimension-one \emph{pitchfork bifurcation} is: $$x'=\mu x+x^3$$ \mcref{DS:fork} shows a qualitative behavior of the stability of the equilibria. \end{definition} \begin{figure}[H] diff --git a/Mathematics/5th/Advanced_probability/Advanced_probability.tex b/Mathematics/5th/Advanced_probability/Advanced_probability.tex index 30a6488..0e95889 100644 --- a/Mathematics/5th/Advanced_probability/Advanced_probability.tex +++ b/Mathematics/5th/Advanced_probability/Advanced_probability.tex @@ -32,7 +32,7 @@ \mu\left(\bigcup_{n\in\NN}{A_n}\right)=\sum_{n\in\NN}{\mu(A_n)} $$ \end{enumerate} - The triple $(E,\mathcal{E},\mu)$ is called a \emph{measurable space}. + The triple $(E,\mathcal{E},\mu)$ is called a \emph{measure space}. \end{definition} \begin{definition} Let $(E,\mathcal{E},\mu)$ be a measurable space and $f:E\to [0,\infty]$ be a measurable function. We define the \emph{integral of $f$ with respect to $\mu$} as: diff --git a/Mathematics/5th/Advanced_topics_in_functional_analysis_and_PDEs/Advanced_topics_in_functional_analysis_and_PDEs.tex b/Mathematics/5th/Advanced_topics_in_functional_analysis_and_PDEs/Advanced_topics_in_functional_analysis_and_PDEs.tex index 904faaa..7c4953b 100644 --- a/Mathematics/5th/Advanced_topics_in_functional_analysis_and_PDEs/Advanced_topics_in_functional_analysis_and_PDEs.tex +++ b/Mathematics/5th/Advanced_topics_in_functional_analysis_and_PDEs/Advanced_topics_in_functional_analysis_and_PDEs.tex @@ -331,6 +331,17 @@ \begin{theorem} Let $1\leq p<\infty$ and $u\in W^{1,p}(\RR_{\geq 0}^d)$. Then, $Tu=0$ if and only if $u\in W_0^{1,p}(\RR_{\geq 0}^d)$. \end{theorem} + \begin{theorem} + Let $1\leq p<\infty$ and $\Omega\subset\RR^d$ be a bounded domain with $\mathcal{C}^1$ boundary. Then, the trace operator + $$ + \function{T}{W^{1,p}(\Omega)}{L^p(\Fr{\Omega})}{u}{u|_{\Fr{\Omega}}} + $$ + is bounded. Here we are taking the norm of $L^p(\Fr{\Omega})$ as ${\norm{u}_{L^p(\Fr{\Omega})}}^p:=\int_{\Fr{\Omega}}{\abs{u}^p}$. In addition: + \begin{itemize} + \item $\forall u\in W^{1,p}(\Omega)$, $Tu=0$ if and only if $u\in W_0^{1,p}(\Omega)$. + \item For $p=2$, $T$ is surjective. + \end{itemize} + \end{theorem} \begin{lemma} Let $\Omega\subseteq \RR^d$ be an open set and $u\in W^{1,p}(\Omega)$ with $1\leq p\leq \infty$. Then, $\norm{\grad \abs{u}}\almoste{\leq}\norm{\grad u}$. \end{lemma} diff --git a/Mathematics/5th/Instabilities_and_nonlinear_phenomena/Instabilities_and_nonlinear_phenomena.tex b/Mathematics/5th/Instabilities_and_nonlinear_phenomena/Instabilities_and_nonlinear_phenomena.tex new file mode 100644 index 0000000..2ce1564 --- /dev/null +++ b/Mathematics/5th/Instabilities_and_nonlinear_phenomena/Instabilities_and_nonlinear_phenomena.tex @@ -0,0 +1,8 @@ +\documentclass[../../../main_math.tex]{subfiles} + +\begin{document} +\changecolor{INLP} +\begin{multicols}{2}[\section{Instabilities and nonlinear phenomena}] + +\end{multicols} +\end{document} \ No newline at end of file diff --git a/Mathematics/5th/Introduction_to_non_linear_elliptic_PDEs/Introduction_to_non_linear_elliptic_PDEs.tex b/Mathematics/5th/Introduction_to_nonlinear_elliptic_PDEs/Introduction_to_nonlinear_elliptic_PDEs.tex similarity index 58% rename from Mathematics/5th/Introduction_to_non_linear_elliptic_PDEs/Introduction_to_non_linear_elliptic_PDEs.tex rename to Mathematics/5th/Introduction_to_nonlinear_elliptic_PDEs/Introduction_to_nonlinear_elliptic_PDEs.tex index 148e449..d65a6f6 100644 --- a/Mathematics/5th/Introduction_to_non_linear_elliptic_PDEs/Introduction_to_non_linear_elliptic_PDEs.tex +++ b/Mathematics/5th/Introduction_to_nonlinear_elliptic_PDEs/Introduction_to_nonlinear_elliptic_PDEs.tex @@ -2,16 +2,16 @@ \begin{document} \changecolor{INLEPDE} -\begin{multicols}{2}[\section{Introduction to non linear elliptic PDEs}] +\begin{multicols}{2}[\section{Introduction to nonlinear elliptic PDEs}] \subsection{Introduction} \begin{definition} - Let $a_{ij}$, $b_j$, $c$, $f$ be known functions on $\Omega\subseteq \RR^d$. Usually we will denote $\vf{A}=(a_{ij})$ and $\vf{b}=(b_j)$ A \emph{linear second-order PDE} is an equation of the form: + Let $a_{ij}$, $b_j$, $c$, $f$ be known scalar functions defined on $\Omega\subseteq \RR^d$. Usually we will denote $\vf{A}=(a_{ij})$ and $\vf{b}=(b_j)$. A \emph{linear second-order PDE} is an equation of the form: \begin{equation*} - -\sum_{i,j=1}^da_{ij}(x){\partial_{ij}}^2u(x)+\sum_{j=1}^db_j(x)\partial_ju(x)+c(x)u(x)=f(x) + -\sum_{i,j=1}^da_{ij}(\vf{x})\partial_{ij}^2u(\vf{x})+\sum_{j=1}^db_j(\vf{x})\partial_ju(\vf{x})+c(\vf{x})u(\vf{x})=f(\vf{x}) \end{equation*} where $u:\Omega\to \RR$ is the unknown function. This form is called \emph{non-divergence form}. If we write the equation in the form: \begin{multline*} - -\sum_{i=1}^d\pdv{}{x_i}\left(\sum_{j=1}^da_{ij}(x)\partial_ju(x)\right)+\sum_{j=1}^db_j(x)\partial_ju(x)+\\+c(x)u(x)=f(x) + -\sum_{i=1}^d\pdv{}{x_i}\left(\sum_{j=1}^da_{ij}(\vf{x})\partial_ju(\vf{x})\right)+\sum_{j=1}^db_j(\vf{x})\partial_ju(\vf{x})+\\+c(\vf{x})u(\vf{x})=f(\vf{x}) \end{multline*} then we say that the equation is in \emph{divergence form}. Together with the PDE we usually impose boundary conditions on $\partial\Omega$. The \emph{Dirichlet boundary condition} is: $$ @@ -19,23 +19,31 @@ $$ and it is called \emph{homogeneous} if $g=0$. The \emph{Neumann boundary condition} is: $$ - \langle \vf{n},\vf{A} \nabla u\rangle|_{\partial\Omega}=g + \langle \vf{n},\vf{A} \grad u\rangle|_{\partial\Omega}=g $$ where we have assumed that the boundary of $\Omega$ is smooth enough to define the normal vector $\vf{n}$. The condition is called \emph{homogeneous} if $g=0$. Note that if $\vf{A}=\vf{I}_d$, then the Neumann boundary condition is just $\partial_{\vf{n}} u=g$. \end{definition} \begin{definition} - Let $a_{ij},b_j,c$ be known functions on $\Omega\subseteq \RR^d$. We say that the operator $$L=-\sum_{i,j=1}^da_{ij}{\partial_{ij}}^2 + \sum_{j=1}^d b_j\partial_j+c$$ is \emph{uniformly elliptic} if there exists $\theta>0$ such that for all $x\in \Omega$ and all $p\in \RR^d$ we have: + Let $a_{ij},b_j,c$ be known functions on $\Omega\subseteq \RR^d$. We say that the operator $$L=-\sum_{i,j=1}^da_{ij}\partial_{ij}^2 + \sum_{j=1}^d b_j\partial_j+c$$ is \emph{uniformly elliptic} if there exists $\theta>0$ such that for all $x\in \Omega$ and all $p\in \RR^d$ we have: \begin{equation} - Q_x(p)=\sum_{i,j=1}^da_{ij}(x)p_ip_j\geq \theta \sum_{i=1}^{d} {p_i}^2 + Q_x(\vf{p})=\sum_{i,j=1}^da_{ij}(\vf{x})p_ip_j\geq \theta \sum_{i=1}^{d} {p_i}^2 \end{equation} \end{definition} \begin{remark} Geometrically speaking, this implies that the sets $$ - \xi_{x,h}=\{ p\in \RR^d: Q_x(p)=h\} + \xi_{x,h}=\{ \vf{p}\in \RR^d: Q_x(\vf{p})=h\} $$ are ellipsoids. \end{remark} + \begin{proposition} + Let $H$ be Hilbert and $K:H\to H$ be a continuous linear operator. Then, the following are equivalent: + \begin{enumerate} + \item $K$ is compact. + \item For any bounded sequence $(u_n)\in H$, the sequence $(Ku_n)$ has a convergent subsequence. + \item For any sequence $(u_n)\in H$ such that $u_n\rightharpoonup u$, we have $Ku_n\to Ku$. + \end{enumerate} + \end{proposition} \subsection{Hilbert space methods for divergence form linear PDEs} In this section, we will assume that $\Omega\subset\RR^d$ is an open, bounded subset, $a_{ij}=a_{ji}$ and $a_{ij},b_j,c\in L^\infty(\Omega)$. \subsubsection{Fredholm alternative} diff --git a/Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex b/Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex index 50c3174..3d9225b 100644 --- a/Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex +++ b/Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex @@ -36,6 +36,22 @@ \end{multline*} \end{proposition} \subsubsection{Brownian motion} + \begin{definition} + A \emph{Brownian motion} is a stochastic process ${(B_t)}_{t\geq 0}$ such that: + \begin{enumerate} + \item $B$ is Gaussian with $\Exp(B_t)=0$ and $\cov(B_s,B_t)=s\wedge t$. + \item $B$ has continuous paths. + \end{enumerate} + \end{definition} + \begin{proposition} + Let $B$ be a Brownian motion. Then: + \begin{enumerate} + \item $B_0=0$ a.s. + \item $B$ has independent increments. + \item $B$ has stationary increments. + \end{enumerate} + Conversely, any stochastic process with these properties has the law of a Brownian motion. + \end{proposition} \begin{theorem}[Strong law of large numbers for Brownian motion] Let ${(B_t)}_{t\geq 0}$ be a Brownian motion. Then: $$ @@ -93,7 +109,7 @@ Now, $\left\{d(X_s,A)\leq\frac{1}{k}\right\}\in \mathcal{F}_s\subseteq \mathcal{F}_t$ because $X$ is adapted and $z\mapsto d(z,A)$ is measurable. Thus, $\{T_A \leq t\}\in \mathcal{F}_t$ because it is a countable union and intersection of events in $\mathcal{F}_t$. \end{proof} - \begin{theorem}[Doob's optional sampling theorem] + \begin{theorem}[Doob's optional sampling theorem]\label{SC:doob_sampling} Let ${(M_t)}_{t\geq 0}$ be a continuous martingale and $T$ be a stopping time. Then, the \emph{stopped process} $M^T:={(M_{t\wedge T})}_{t\geq 0}$ is a continuous martingale. In particular, $\forall t\geq 0$, $\Exp(M_{t\wedge T})=\Exp(M_0)$. If $M^T$ is uniformly integrable and $T\overset{\text{a.s.}}{\leq}\infty$, then taking $t\to\infty$ we have $\Exp(M_T)=\Exp(M_0)$. \end{theorem} \begin{lemma}[Orthogonality of martingales]\label{SC:orthogonality_martingales} @@ -205,7 +221,7 @@ \end{proof} \subsubsection{Local martingales} \begin{definition} - A stochastic process ${(M_t)}_{t\geq 0}$ is a \emph{local martingale} if there exists a sequence of stopping times ${(T_n)}_{n\in\NN}$ (called \emph{localizing sequence}) such that: + A stochastic process ${(M_t)}_{t\geq 0}$ is a \emph{continuous local martingale} if there exists a sequence of stopping times ${(T_n)}_{n\in\NN}$ (called \emph{localizing sequence}) such that: \begin{enumerate} \item $T_n\nearrow \infty$ a.s. \item $M^{T_n}:={(M_{t\wedge T_n})}_{t\geq 0}$ is a martingale for all $n\in\NN$. @@ -235,14 +251,49 @@ $$ And using the \mnameref{P:dominated} with $M_{t\wedge T_n}\leq \sup_{0\leq s\leq t}\abs{M_s}$ we conclude the result. \end{proof} - + \begin{remark} + Note that if $M$ is a continuous local martingale with $M_0=0$, then we can always take $T_n=\inf\{t\geq 0:\abs{M_t}\geq n\}$ as a localizing sequence. + \end{remark} + \begin{theorem}[Doob's optional sampling theorem for local martingales] + Let $M={(M_t)}_{t\geq 0}$ be a continuous local martingale and $T$ be a stopping time. Then, the stopped process $M^T:={(M_{t\wedge T})}_{t\geq 0}$ is a continuous local martingale. + \end{theorem} + \begin{proof} + Let ${(T_n)}_{n\in\NN}$ be a localizing sequence for $M$. Since $M^{T_n}$ is a continuous martingale, by \mnameref{SC:doob_sampling} we have that $M^{T_n\wedge T}$ is a continuous martingale. Thus, $M^T$ is a local martingale with localizing sequence ${(T_n)}_{n\in\NN}$. + \end{proof} + \begin{proposition} + Continuous local martingales form a vector space. + \end{proposition} + \begin{proof} + Let $M$, $\tilde{M}$ be continuous local martingales with localizing sequences ${(T_n)}_{n\in\NN}$ and ${(\tilde{T}_n)}_{n\in\NN}$ respectively and $\lambda,\tilde{\lambda}\in\RR$. Then, ${(T_n\wedge \tilde{T}_n)}_{n\in\NN}$ is a localizing sequence for both $M$ and $\tilde{M}$ and so $\lambda M^{T_n\wedge \tilde{T}_n}+\tilde{\lambda}\tilde{M}^{T_n\wedge \tilde{T}_n}$ is a martingale. + \end{proof} + \begin{proposition} + If $M$ is a continuous local martingale which has finite variation a.s., then: + $$ + \Prob(\forall t\geq 0,\ M_t=M_0)=1 + $$ + \end{proposition} + \begin{proof} + Let ${(T_n)}_{n\in\NN}$ be a localizing sequence for $M$. Then, $M^{T_n}$ is a martingale and $V(M^{T_n},0,t)=V(M,0,t\wedge T_n)<\infty$. Thus, by \mcref{SC:corollary_finite_variation} we have that $M^{T_n}_t=M^{T_n}_0$ $\forall t\geq 0$ and $n\in\NN$. Taking $n\to\infty$ we get the result. + \end{proof} + \begin{proposition} + Let $M$ be a continuous local martingale. Then, the limit + $$ + {\langle M\rangle}_t:=\lim_{n\to\infty}\sum_{k=1}^{n}\abs{M_{t_k^n}-M_{t_{k-1}^n}}^2 + $$ + exists in probability for any $t\geq 0$ and does not depend on the partition ${(t_k^n)}_{0\leq k\leq n}\in \mathrm{P}([0,t])$ chosen as long as $\Delta_n\to 0$. Moreover, $\langle M\rangle=({\langle M\rangle}_t)_{t\geq 0}$ is the unique process (up to modification) such that: + \begin{enumerate} + \item ${\langle M\rangle}_0=0$ + \item $t\mapsto {\langle M\rangle}_t$ is a.s.\ continuous. + \item $\langle M\rangle$ is a.s.\ non-decreasing. + \item ${({M_t}^2-{\langle M\rangle}_t)}_{t\geq 0}$ is a continuous local martingale. + \end{enumerate} + \end{proposition} \begin{theorem}[Levy's characterization of Brownian motion] - Let $M={(M_t)}_{t\geq 0}$ be a stochastic process. Then, the following are equivalent: + Let $M={(M_t)}_{t\geq 0}$ be a stochastic process. Then, the following are equivalent: \begin{enumerate} \item $M$ is a continuous local square-integrable martingale with $M_0=0$ and ${\langle M\rangle}_t=t$. \item $M$ is a ${(\mathcal{F}_t)}_{t\geq 0}$-Brownian motion. \end{enumerate} \end{theorem} - \end{multicols} \end{document} \ No newline at end of file diff --git a/index.html b/index.html index dd3e9ff..b278b0a 100644 --- a/index.html +++ b/index.html @@ -74,7 +74,7 @@

Mathematics

  • -
  • +
  • diff --git a/main_math.tex b/main_math.tex index 11e3088..048a926 100644 --- a/main_math.tex +++ b/main_math.tex @@ -113,7 +113,7 @@ \chapter{Fifth year} \subfile{Mathematics/5th/Introduction_to_evolution_PDEs/Introduction_to_evolution_PDEs.tex} \cleardoublepage -\subfile{Mathematics/5th/Introduction_to_non_linear_elliptic_PDEs/Introduction_to_non_linear_elliptic_PDEs.tex} +\subfile{Mathematics/5th/Introduction_to_nonlinear_elliptic_PDEs/Introduction_to_nonlinear_elliptic_PDEs.tex} \cleardoublepage % \subfile{Mathematics/5th/Limit_theorems_and_large_deviations/Limit_theorems_and_large_deviations.tex}