diff --git a/Mathematics/5th/Introduction_to_nonlinear_elliptic_PDEs/Introduction_to_nonlinear_elliptic_PDEs.tex b/Mathematics/5th/Introduction_to_nonlinear_elliptic_PDEs/Introduction_to_nonlinear_elliptic_PDEs.tex index a345b0b..0dbdc94 100644 --- a/Mathematics/5th/Introduction_to_nonlinear_elliptic_PDEs/Introduction_to_nonlinear_elliptic_PDEs.tex +++ b/Mathematics/5th/Introduction_to_nonlinear_elliptic_PDEs/Introduction_to_nonlinear_elliptic_PDEs.tex @@ -335,7 +335,7 @@ $$ \end{corollary} \subsubsection{Weak maximum principle for weak solutions of divergence-form elliptic PDEs} - \begin{lemma} + \begin{lemma}\label{INEPDE:lemma1_weak_max} Let $\Omega\subseteq\RR^d$ open and $u\in H^1(\Omega)$. Then: $$ u^{+}:=\begin{cases} @@ -379,16 +379,26 @@ \end{itemize} Then, $u\almoste{\leq}0$. \end{theorem} + \begin{proof} + Take $v=u^+\in H^1_0(\Omega)$ by \mcref{INEPDE:lemma1_weak_max}. Then, we have: + $$ + 0\leq \theta {\norm{\grad u^+}_{L^2}}^2\leq\!\! \int_{\{u>0\}}\!\!\sum_{i,j=1}^d a_{ij}\partial_iu\partial_ju+cu^2=\!\!\int_{\{u>0\}} \!\!fu\leq 0 + $$ + where in the second inequality we used the ellipticity of $L$. Thus, we must have $\grad u^+=0$ a.e. in $\Omega$, which implies $u^+=0$ a.e. in $\Omega$, because $u^+|_{\Fr{\Omega}}=0$. + \end{proof} \begin{theorem}[Weak maximum principle] - Let $\Omega\subseteq\RR^d$ open and bounded with $\mathcal{C}^1$ boundary, $a_{ij}=a_{ji},b_j,c\in L^\infty(\Omega)$, $L=-\sum_{i,j=1}^d\partial_i(a_{ij}\partial_j)+\sum_{j=1}^db_j\partial_j+c$ be elliptic and $f\in L^2(\Omega)$ with $f\almoste{\leq} 0$. Let $u\in H^1(\Omega)$ be such that: + Let $\Omega\subseteq\RR^d$ open and bounded with $\mathcal{C}^1$ boundary, $a_{ij}=a_{ji},b_j,c\in L^\infty(\Omega)$, $c \almoste{\geq}0$, $L=-\sum_{i,j=1}^d\partial_i(a_{ij}\partial_j)+\sum_{j=1}^db_j\partial_j+c$ be elliptic and $f\in L^2(\Omega)$ with $f\almoste{\leq} 0$. Let $u\in H^1(\Omega)$ be such that: \begin{itemize} - \item $\displaystyle \int_\Omega\left[\sum_{i,j=1}^da_{ij}\partial_iu\partial_jv+cuv\right]=\int_\Omega fv$ $\forall v\in H^1_0(\Omega)$ + \item $\displaystyle \int_\Omega\left[\sum_{i,j=1}^da_{ij}\partial_iu\partial_jv+ \sum_{j=1}^db_jv\partial_ju+cuv\right]=\int_\Omega fv$ $\forall v\in H^1_0(\Omega)$ \item $\Tr_{\partial\Omega}u\almoste{\leq}0$ \end{itemize} Then, $u\almoste{\leq}0$. \end{theorem} + \begin{proof} + TODO + \end{proof} \begin{corollary} - For each $f\in L^2(\Omega)$, the problem $\mathcal{D}_f$ has a unique weak solution $u_f$. Moreover, if $\Fr{\Omega}\in\mathcal{C}^1$, then $u_f\in H^2(\Omega)$ and $f\mapsto u_f$ is a bounded linear operator from $L^2(\Omega)$ to $H^2(\Omega)$. If $\Fr{\Omega}\in\mathcal{C}^{m+1}$, $b_j\in\mathcal{C}^{m-1}$ and $f\in H^{m-1}(\Omega)$, then $u_f\in H^{m+1}(Omega)$ and $f\mapsto u_f$ is a bounded linear operator from $H^{m-1}(\Omega)$ to $H^{m+1}(\Omega)$. + For each $f\in L^2(\Omega)$, the problem $\mathcal{D}_f$ has a unique weak solution $u_f$. Moreover, if $\Fr{\Omega}\in\mathcal{C}^1$, then $u_f\in H^2(\Omega)$ and $f\mapsto u_f$ is a bounded linear operator from $L^2(\Omega)$ to $H^2(\Omega)$. If $\Fr{\Omega}\in\mathcal{C}^{m+1}$, $b_j\in\mathcal{C}^{m-1}$ and $f\in H^{m-1}(\Omega)$, then $u_f\in H^{m+1}(\Omega)$ and $f\mapsto u_f$ is a bounded linear operator from $H^{m-1}(\Omega)$ to $H^{m+1}(\Omega)$. \end{corollary} \begin{theorem} Let $1