From 4f5543c6959e1def866cd93eaf7394038d4e6805 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?V=C3=ADctor?= Date: Thu, 19 Oct 2023 18:09:23 +0200 Subject: [PATCH] updated montecarlo methods --- .../Montecarlo_methods/Montecarlo_methods.tex | 35 +++++++++++++++++++ 1 file changed, 35 insertions(+) diff --git a/Mathematics/5th/Montecarlo_methods/Montecarlo_methods.tex b/Mathematics/5th/Montecarlo_methods/Montecarlo_methods.tex index b28c557..3659fd6 100644 --- a/Mathematics/5th/Montecarlo_methods/Montecarlo_methods.tex +++ b/Mathematics/5th/Montecarlo_methods/Montecarlo_methods.tex @@ -284,5 +284,40 @@ $$ This quantity can be larger or smaller than $\Var(Y )$ depending on the choice of $L$ and thus the success of importance sampling relies on the choice of an effective change of probability measure. \end{remark} + \subsection{Simulation of diffusion processes} + The aim of this section is to develop methods to simulate solutions to SDEs of the form: + \begin{equation}\label{MM:SDE} + \begin{cases} + \dd{\vf{X}_t}=\vf{b}(\vf{X}_t)\dd{t}+\vf{\sigma}(\vf{X}_t)\dd{\vf{B}_t} + \vf{X}_0=\vf{x}_0 + \end{cases} + \end{equation} + where $\vf{b}:\RR^d\to\RR^d$ and $\vf{\sigma}:\RR^d\to\mathcal{M}_{d\times d}(\RR)$ are Lipschitz continuous. + \subsubsection{Exact simulation} + \begin{proposition} + To simulate a sample $(\vf{B}_{t_1},\dots,\vf{B}_{t_n})$ of a $d$-dimensional Brownian motions, we can use the following algorithm: + \begin{enumerate} + \item Generate $(\vf{Z}_1,\dots,\vf{Z}_n)$ \iid $N_d(0,\vf{I}_d)$. + \item Set $\vf{B}_{t_0}:=0$ and for all $0\leq i\leq n-1$, set: + $$ + \vf{B}_{t_{i+1}}=\vf{B}_{t_i}+\sqrt{t_{i+1}-t_i}\vf{Z}_{i+1} + $$ + \end{enumerate} + \end{proposition} + \subsubsection{Euler scheme} + \begin{definition} + Consider the SDE of \mcref{MM:SDE} and let $h$ be a discretization step. The Euler method consists in: + \begin{align*} + \vf{X}_{t+h} & =\vf{X}_t+\int_t^{t+h}\vf{b}(\vf{X}_s)\dd{s}+\int_t^{t+h}\vf{\sigma}(\vf{X}_s)\dd{\vf{B}_s} \\ + & \approx \vf{X}_t+h\vf{b}(\vf{X}_t)+\vf{\sigma}(\vf{X}_t)(\vf{B}_{t+h}-\vf{B}_t) + \end{align*} + More generally, if we want to obtain the solution at $(t_1,\dots,t_n)$, we can use the following algorithm. Set $\vf{\tilde{X}}_0:=\vf{x}_0$ and for all $0\leq i\leq n-1$, set: + $$ + \vf{\tilde{X}}_{t_{i+1}}=\vf{\tilde{X}}_{t_i}+(t_{i+1}-t_i)\vf{b}(\vf{\tilde{X}}_{t_i})+\vf{\sigma}(\vf{\tilde{X}}_{t_i})(\vf{B}_{t_{i+1}}-\vf{B}_{t_i}) + $$ + \end{definition} + \begin{remark} + Note that Euler scheme reduces to generating independent increments $\vf{B}_{t_{i+1}}-\vf{B}_{t_i}\sim \sqrt{t_{i+1}-t_i}N_d(0,\vf{I}_d)$. + \end{remark} \end{multicols} \end{document} \ No newline at end of file