diff --git a/Mathematics/5th/Introduction_to_nonlinear_elliptic_PDEs/Introduction_to_nonlinear_elliptic_PDEs.tex b/Mathematics/5th/Introduction_to_nonlinear_elliptic_PDEs/Introduction_to_nonlinear_elliptic_PDEs.tex index d65a6f6..d10ecbb 100644 --- a/Mathematics/5th/Introduction_to_nonlinear_elliptic_PDEs/Introduction_to_nonlinear_elliptic_PDEs.tex +++ b/Mathematics/5th/Introduction_to_nonlinear_elliptic_PDEs/Introduction_to_nonlinear_elliptic_PDEs.tex @@ -46,7 +46,6 @@ \end{proposition} \subsection{Hilbert space methods for divergence form linear PDEs} In this section, we will assume that $\Omega\subset\RR^d$ is an open, bounded subset, $a_{ij}=a_{ji}$ and $a_{ij},b_j,c\in L^\infty(\Omega)$. - \subsubsection{Fredholm alternative} \begin{theorem}[Abstract Fredholm alternative] Let $H$ be Hilbert and $K:H\to H$ be a compact linear operator. Then: \begin{enumerate} @@ -55,5 +54,71 @@ \item Either $\ker(\id-K)\ne\{0\}$ or $\id -K$ is and isomorphism. \end{enumerate} \end{theorem} + \begin{definition} + Consider the problem + $$ + \mathcal{D}_f:=\begin{cases} + Lu=f & \text{in }\Omega \\ + u=0 & \text{on }\partial\Omega + \end{cases} + $$ + where $L=-\laplacian+\vf{b}\cdot \grad$. Its \emph{weak formulation} is: + \begin{equation*} + \langle \grad u,\grad v\rangle+\langle \vf{b}\cdot \grad u,v\rangle=\langle f,v\rangle\quad \forall v\in H_0^1(\Omega) + \end{equation*} + We define the \emph{formal adjoint} of $L$ as: + $$ + L^*v=-\laplacian v-\div(\vf{b}v) + $$ + \end{definition} + \begin{proposition} + The \emph{homogeneous adjoint problem} + $$ + \mathcal{D}_0^*:=\begin{cases} + L^*v=0 & \text{in }\Omega \\ + v=0 & \text{on }\partial\Omega + \end{cases} + $$ + whose weak formulation is + \begin{equation*} + \langle \grad v,\grad w\rangle+\langle \vf{b}\cdot \grad v,w\rangle=0\quad \forall w\in H_0^1(\Omega) + \end{equation*} + has a finite dimensional solution space $W_0$, as well as the space $V_0$ of solutions of $\mathcal{D}_0$, and $\dim W_0=\dim V_0$. Moreover, if $f\in L^2(\Omega)$, $\mathcal{D}_f$ is solvable if and only if $\langle f,v\rangle=0$ for all $v\in W_0$. + \end{proposition} + \begin{definition} + We define the following problem: + $$ + \mathcal{N}_f:=\begin{cases} + -\laplacian u=f & \text{in }\Omega \\ + \pdv{u}{\vf{n}}=0 & \text{on }\partial\Omega + \end{cases} + $$ + and $\mathcal{N}_f^*=\mathcal{N}_f$. The weak formulation of the problem is: + \begin{equation*} + \langle \grad u,\grad v\rangle=\langle f,v\rangle\quad \forall v\in H^1(\Omega) + \end{equation*} + \end{definition} + \begin{proposition} + $\mathcal{N}_f$ has at least one solution if and only if for any weak solution $v$ of $\mathcal{N}_0$ we have $\langle f,v\rangle=0$. + \end{proposition} + \subsection{Spectrum of compact operators} + In this section $\KK$ will denote either $\RR$ or $\CC$. + \begin{definition} + Let $H$ be a $\KK$-Hilbert space and $K:H\to H$ be a compact operator. We define the \emph{resolvent set} of $K$ as: + $$ + \rho(K)=\{\lambda\in \KK: \lambda-K \text{ is invertible}\} + $$ + and the \emph{spectrum} of $K$ as: + $$ + \sigma(K)=\KK\setminus \rho(K) + $$ + \end{definition} + \begin{theorem} + Let $H$ be a Hilbert space and $K:H\to H$ be a compact operator. Then, $0\in \sigma(K)$ and $\sigma(K)$ is closed and at most countable. Moreover, if $\lambda\in \sigma(K)\setminus\{0\}$, then $\lambda$ is an eigenvalue of $K$ and: + $$ + \dim\left(\bigcup_{p\geq 1}\ker{(\lambda\id-K)}^p\right)<\infty + $$ + If $\sigma(K)\cap\RR^*$ is infinite, then it is of the form $\{\lambda_n\}_{n\in \NN}$ with $\lambda_n\to 0$. + \end{theorem} \end{multicols} \end{document} \ No newline at end of file diff --git a/Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex b/Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex index ae01860..5c29648 100644 --- a/Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex +++ b/Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex @@ -432,6 +432,131 @@ $$ \Exp\left(Z_t^f\mid \mathcal{F}_s\right)=Z_s^f\Exp\left(\exp{\int_s^t f(u)\dd{B_u}-\frac{1}{2}\int_s^t{f(u)}^2\dd{u}}\right)=Z_s^f $$ + because $\int_s^t f(u)\dd{B_u}\sim N(0,\int_s^t{f(u)}^2\dd{u})$. \end{proof} + \subsubsection{Progressive processes} + \begin{definition} + Let $(\Omega,\mathcal{F},\Prob,{(\mathcal{F}_t)}_{t\geq 0})$ be a filtered probability space and $\phi={(\phi_t)}_{t\geq 0}$ a stochastic process. We say that $\phi$ is \emph{progressive} if for fixed $t\geq 0$ the function + $$ + \function{}{([0,t]\times \Omega,\mathcal{B}([0,t])\otimes \mathcal{F}_t)}{(\RR,\mathcal{B}(\RR))}{(u,\omega)}{\phi_u(\omega)} + $$ + is measurable. + \end{definition} + \begin{lemma} + Let $\phi={(\phi_t)}_{t\geq 0}$ be a stochastic process and + $$ + \mathcal{P}:=\cap_{t\geq 0}\{ A\subset \RR_{\geq 0}\times\Omega:A\cap([0,t]\times\Omega)\in \mathcal{B}([0,t])\otimes \mathcal{F}_t\} + $$ + Then, $\phi$ is progressive if and only if the map $(t,\omega)\mapsto\phi_t(\omega)$ is $\mathcal{P}$-measurable. + \end{lemma} + \begin{proposition} + The following stochastic processes ${(\phi_t)}_{t\geq 0}$ are progressive: + \begin{itemize} + \item A deterministic process $\phi_t(\omega)=f(t)$, $f:\RR_{\geq 0}\to\RR$. + \item $\phi_t(\omega)=X(\omega)\indi{(a,b]}(t)$ where $0\leq a