diff --git a/Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex b/Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex index 20f029e..df4e692 100644 --- a/Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex +++ b/Mathematics/5th/Stochastic_calculus/Stochastic_calculus.tex @@ -669,7 +669,7 @@ $$ \end{corollary} \subsubsection{Itô's formula} - \begin{theorem}[Itô's formula] + \begin{theorem}[Itô's formula]\label{SC:ito_formula} Let $X={(X_t)}_{t\geq 0}$ be an Itô process and $f\in C^2(\RR)$. Then, ${(f(X_t))}_{t\geq 0}$ is an Itô process and: $$ \dd{f(X_t)}=f'(X_t)\dd{X_t}+\frac{1}{2}f''(X_t)\dd{{\langle X\rangle}_t} @@ -836,17 +836,54 @@ \end{equation} for some measurable function $\Psi_t:\RR\times C([0,t],\RR)\to \RR$. \end{remark} - \begin{remark} - The following SDE was proposed by Paul Langevin in 1908 to describe the random motion of a small particle in a fluid, due to collisions with the surrounding molecules: + \subsubsection{Practical examples} + \begin{proposition}[Langevin equation] + Consider the following SDE: $$ \dd{X_t}=-b X_t\dd{t}+\sigma\dd{B_t} - $$ - with $b,\sigma>0$. \mnameref{SC:existence_uniqueness_SDE} implies that the solution is unique and that given $\zeta \in L^2(\Omega,\mathcal{F}_0,\Prob)$, the solution is given by: + $$ with $b,\sigma>0$ and $X_0=\zeta\in L^2(\Omega,\mathcal{F}_0,\Prob)$. Then, the solution is given by: $$ X_t= \zeta \exp{-bt}+\sigma\int_0^t \exp{-b(t-s)}\dd{B_s} $$ - Note that the long-term behavior of $X_t$ has law of $N(0,\frac{\sigma^2}{2b})$, independently of the initial condition $\zeta$. + \end{proposition} + \begin{remark} + This SDE was proposed by Paul Langevin in 1908 to describe the random motion of a small particle in a fluid, due to collisions with the surrounding molecules. Note that the long-term behavior of $X_t$ has law of $N(0,\frac{\sigma^2}{2b})$ (because the second term has law $N(0,\frac{\sigma^2}{2b}(1-\exp{-2bt}))$), independently of the initial condition $\zeta$. \end{remark} + \begin{proposition}[Geometric Brownian motion] + Consider the following SDE: + $$ + \dd{X_t}=X_t(b \dd{t}+\sigma\dd{B_t}) + $$ + with $X_0=\zeta\in L^2(\Omega,\mathcal{F}_0,\Prob)$. Then, the solution is given by: + $$ + X_t=\zeta\exp{\left(b-\frac{\sigma^2}{2}\right) t+\sigma B_t} + $$ + \end{proposition} + \begin{proof} + This equation has a unique solution and it's natural to expect it is of the form $X_t=\zeta \exp{Y_t}$, where $Y_t$ is an Itô process. Identifying $\dd{Y_t}=\psi_t\dd{t}+\phi_t\dd{B_t}$ and using the \mnameref{SC:ito_formula} we get: + \begin{align*} + \dd{(\zeta \exp{Y_t})} & =\zeta \exp{Y_t}\left(\dd{Y_t}+\frac{1}{2}\dd{{\langle Y\rangle}_t}\right) \\ + & =\zeta \exp{Y_t}\left(\psi_t\dd{t}+\phi_t\dd{B_t}+\frac{1}{2}\phi_t^2\dd{t}\right) + \end{align*} + and so $\phi_t=\sigma$ and $\psi_t=b-\frac{\sigma^2}{2}$. + \end{proof} + \begin{proposition}[Black-Scholes process] + Consider the following SDE: + $$ + \dd{X_t}=X_t(b_t \dd{t}+\sigma_t\dd{B_t}) + $$ + with $X_0=\zeta\in L^2(\Omega,\mathcal{F}_0,\Prob)$ and ${(b_t)}_{t\geq 0}$, ${(b_t)}_{t\geq 0}$ deterministic measurable bounded functions. Then, the solution is given by: + $$ + X_t=\zeta\exp{\int_0^t \left(b_s-\frac{\sigma_s^2}{2}\right)\dd{s}+\int_0^t \sigma_s\dd{B_s}} + $$ + \end{proposition} + \begin{proof} + This equation has a unique solution and as in the previous example, we expect $X_t=\zeta \exp{Y_t}$, where $Y_t$ is an Itô process. Identifying $\dd{Y_t}=\psi_t\dd{t}+\phi_t\dd{B_t}$ and using the \mnameref{SC:ito_formula} we get: + \begin{equation*} + \dd{(\zeta \exp{Y_t})} =\zeta \exp{Y_t}\left(\psi_t\dd{t}+\phi_t\dd{B_t}+\frac{1}{2}\phi_t^2\dd{t}\right) + \end{equation*} + and so $\phi_t=\sigma_t$ and $\psi_t=b_t-\frac{\sigma_t^2}{2}$. + \end{proof} \subsubsection{Markov property for diffusions} \begin{definition} Let $b.\sigma:\RR\to\RR$ be two Lipschitz functions and consider the following \emph{homogeneous SDE}: @@ -864,6 +901,30 @@ X_{t+s}=\Psi_{t}(X_s,{(B_{u+s}-B_s)}_{u\in[0,t]}) $$ \end{theorem} + \begin{definition} + Let $f\in L^\infty(\RR)$ and $t\geq 0$. We define the function $P_tf$ as: + $$ + \function{P_tf}{\RR}{\RR}{x}{\Exp(f(X_t^x))} + $$ + where $X_t^x$ is the solution to the SDE of \mcref{SC:homogeneous_SDE} with $X_0=x$. + \end{definition} + \begin{corollary} + For any $s,t\geq 0$ and any $f\in L^\infty(\RR)$ we have: + $$ + \Exp(f(X_{t+s}))=(P_tf)(X_s) + $$ + \end{corollary} + \begin{proposition} + The family ${(P_t)}_{t\geq 0}$ has the following properties: + \begin{enumerate} + \item $P_t$ is a bounded linear operator from $L^\infty(\RR)$ to itself for each $t\geq 0$. + \item $P_0=\id$ and $P_{t+s}=P_t\circ P_s$ for all $s,t\geq 0$. + \item If $f$ is continuous, then so is $t\mapsto P_tf(x)$ for each fixed $x\in\RR$. + \item If $f$ is monotone, then so is $P_tf$ for each $t\geq 0$. + \item If $f$ is Lipschitz, then so is $P_tf$ for each $t\geq 0$. + \item If $\sigma, b,f\in\mathcal{C}_\text{b}^k(\RR)$ for some $k\geq 1$, then so is $P_tf$ for each $t\geq 0$. + \end{enumerate} + \end{proposition} \subsubsection{Generator of a diffusion} \subsubsection{Connection with PDEs} \end{multicols}