diff --git a/.github/workflows/buildpdf.yml b/.github/workflows/buildpdf.yml index f9f945d..e0d7a55 100644 --- a/.github/workflows/buildpdf.yml +++ b/.github/workflows/buildpdf.yml @@ -180,8 +180,8 @@ jobs: - name: Compile - INEPDE uses: xu-cheng/latex-action@v2 with: - root_file: Introduction_to_nonlinear_elliptic_PDEs.tex - working_directory: Mathematics/5th/Introduction_to_nonlinear_elliptic_PDEs/ + root_file: Introduction_to_non_linear_elliptic_PDEs.tex + working_directory: Mathematics/5th/Introduction_to_non_linear_elliptic_PDEs/ - name: Compile - LTLD uses: xu-cheng/latex-action@v2 with: @@ -273,7 +273,7 @@ jobs: Mathematics/5th/Advanced_probability/Advanced_probability.pdf Mathematics/5th/Advanced_topics_in_functional_analysis_and_PDEs/Advanced_topics_in_functional_analysis_and_PDEs.pdf Mathematics/5th/Introduction_to_evolution_PDEs/Introduction_to_evolution_PDEs.pdf - Mathematics/5th/Introduction_to_nonlinear_elliptic_PDEs/Introduction_to_nonlinear_elliptic_PDEs.pdf + Mathematics/5th/Introduction_to_non_linear_elliptic_PDEs/Introduction_to_non_linear_elliptic_PDEs.pdf Mathematics/5th/Limit_theorems_and_large_deviations/Limit_theorems_and_large_deviations.pdf Mathematics/5th/Stochastic_calculus/Stochastic_calculus.pdf main_physics.pdf diff --git a/Mathematics/4th/Stochastic_processes/Stochastic_processes.tex b/Mathematics/4th/Stochastic_processes/Stochastic_processes.tex index d050b91..098c02f 100644 --- a/Mathematics/4th/Stochastic_processes/Stochastic_processes.tex +++ b/Mathematics/4th/Stochastic_processes/Stochastic_processes.tex @@ -157,7 +157,7 @@ \end{definition} \subsubsection{Galton-Watson process} \begin{model}\label{SP:galtonwatsonModel} - Let $(X_n)$, $n\in\NN\cup\{0\}$ be a sequence of discrete random vairables representing the number of new individuals of a certain population at the $n$-th generation. Suppose they are defined as $$X_{n+1}=\sum_{k=1}^{X_n}Z_{n+1}^{(k)}$$ and $X_0=1$. Here $Z_{n+1}^{(k)}$ has support $\NN\cup\{0\}$ $\forall n,k$ and represent the number of descendants (to the next generation) of the $k$-th individual of the $n$-th generation. Suppose that $Z_{n+1}^{(k)}\sim Z$ are \iid and independent of $(X_n)$. We would like to study the probability $\rho$ of extinction of this population: $$\rho=\Prob(\{X_n=0:\text{for some $n\in\NN$}\})=\Prob\left(\bigcup_{n=1}^\infty\{X_n=0\}\right)$$ + Let $(X_n)$, $n\in\NN\cup\{0\}$ be a sequence of discrete random variables representing the number of new individuals of a certain population at the $n$-th generation. Suppose they are defined as $$X_{n+1}=\sum_{k=1}^{X_n}Z_{n+1}^{(k)}$$ and $X_0=1$. Here $Z_{n+1}^{(k)}$ has support $\NN\cup\{0\}$ $\forall n,k$ and represent the number of descendants (to the next generation) of the $k$-th individual of the $n$-th generation. Suppose that $Z_{n+1}^{(k)}\sim Z$ are \iid and independent of $(X_n)$. We would like to study the probability $\rho$ of extinction of this population: $$\rho=\Prob(\{X_n=0:\text{for some $n\in\NN$}\})=\Prob\left(\bigcup_{n=1}^\infty\{X_n=0\}\right)$$ \end{model} \begin{lemma}\label{SP:lemmaGaltonWatson} Let $(Z_n)$ be a sequence of \iid random variables distributed as $Z$ with support $\NN\cup\{0\}$, and $N$ be a random variable also with support $\NN\cup\{0\}$ and independent to $(Z_n)$. Let $X=\sum_{k=1}^NZ_k$. Then, $\forall s\in[-1,1]$ we have: $$g_X(s)=g_N(g_Z(s))$$ @@ -1271,14 +1271,14 @@ \end{theorem} \subsection{Brownian motion} \subsubsection{Gaussian processes} - \begin{proposition}\label{SP:gaussian_vector} - Let $\vf{x}\in \RR^n$ be a random vector. Then, $\vf{x}$ is a \emph{gaussian vector}, that is it distributes as an $n$-dimensional normal, if and only if there exists $k\in\NN$, $\vf{A}\in\mathcal{M}_{n\times k}(\RR)$, $\vf{z}\in\RR^k$ with \iid components distributed as $N(0,1)$, and $\vf\mu\in\RR^n$ such that: $$\vf{x}=\vf{A}\vf{z}+\vf\mu$$ + \begin{proposition}\label{SP:Gaussian_vector} + Let $\vf{x}\in \RR^n$ be a random vector. Then, $\vf{x}$ is a \emph{Gaussian vector}, that is it distributes as an $n$-dimensional normal, if and only if there exists $k\in\NN$, $\vf{A}\in\mathcal{M}_{n\times k}(\RR)$, $\vf{z}\in\RR^k$ with \iid components distributed as $N(0,1)$, and $\vf\mu\in\RR^n$ such that: $$\vf{x}=\vf{A}\vf{z}+\vf\mu$$ \end{proposition} \begin{definition} - A stochastic process ${(X_t)}_{t\geq 0}$ is called a \emph{gaussian process} if for all $t_1,\ldots,t_n\geq 0$ the random vector $(X_{t_1},\ldots,X_{t_n})$ is gaussian. + A stochastic process ${(X_t)}_{t\geq 0}$ is called a \emph{Gaussian process} if for all $t_1,\ldots,t_n\geq 0$ the random vector $(X_{t_1},\ldots,X_{t_n})$ is Gaussian. \end{definition} \begin{definition} - Let ${(X_t)}_{t\geq 0}$ be a gaussian process. + Let ${(X_t)}_{t\geq 0}$ be a Gaussian process. Then, the \emph{mean function} is defined as: $$ \function{\mu}{[0,\infty)}{\RR}{t}{\Exp(X_t)=:\mu_t} @@ -1300,7 +1300,7 @@ The Brownian motion is said to be \emph{standard} if $\sigma=1$. \end{definition} \begin{proposition} - Let $B:={(B_t)}_{t\geq 0}$ be a standard Brownian motion. Then, $B$ is a gaussian process with mean function $\mu_t=0$ and covariance function $C(s,t)=\min(s,t)$. + Let $B:={(B_t)}_{t\geq 0}$ be a standard Brownian motion. Then, $B$ is a Gaussian process with mean function $\mu_t=0$ and covariance function $C(s,t)=\min(s,t)$. \end{proposition} \begin{proof} Let $0< t_1<\cdots0}$ is a Brownian motion. In particular, we must have continuity at $0=B_0$. + \end{proof} + \begin{theorem}[Markov property for Brownian motion] + Let $B={(B_t)}_{t\geq 0}$ be a Brownian motion and $a\geq 0$ fixed. Then, the Brownian motion ${(B_{t+a}-B_a)}_{t\geq 0}$ is independent of ${(B_s)}_{s\in [0,a]}$. + \end{theorem} + \begin{proof} + The processes ${(B_s)}_{s\in[0,a]}$ and ${(B_{t+a}-B_a)}_{t\geq 0}$ are jointly Gaussian, because their coordinates are linear combinations of coordinates of the same Gaussian process $B$. Thus, by \mcref{lemma:indep_joint_gauss} it reduces to compute the following correlation: + $$ + \cov(B_s,B_{t+a}-B_a)=s\wedge(t+a)-s\wedge a=0 + $$ + \end{proof} + \begin{remark} + Recall that $s\wedge t:=\min(s,t)$ and $s\vee t:=\max(s,t)$. + \end{remark} + \subsubsection{Martingales} + From now on, we will assume that we work in a filtered probability space $(\Omega,\mathcal{F},\Prob,{(\mathcal{F}_t)}_{t\geq 0})$. + \begin{proposition} + Let ${(B_t)}_{t\geq 0}$ be a Brownian motion. Then, the following processes are martingales ${(M_t)}_{t\geq 0}$ with respect to the filtration induced by ${(B_t)}_{t\geq 0}$: + \begin{itemize} + \item $M_t=B_t$ + \item $M_t=B_t^2-t$ + \item $M_t=\exp{\theta B_t-\frac{1}{2}\theta^2t}$, for any fixed $\theta\in\RR$. + \end{itemize} + \end{proposition} + \begin{proposition} + Let $A\subseteq \RR$ be a closed set and $X={(X_t)}_{t\geq 0}$ be an adapted continuous process. Then, the \emph{hitting time} of $A$ by $X$, defined as: + $$ + T_A:=\inf\{t\geq 0:X_t\in A\} + $$ + is a stopping time. + \end{proposition} + \begin{proof} + Using the continuity of $X$ and the fact that $A$ is closed, one can easily check that: + $$ + \{T_A \leq t\}=\bigcap_{k\in\NN}\bigcup_{s\in[0,t]\cap\QQ}\left\{d(X_s,A)\leq\frac{1}{k}\right\} + $$ + Now, $\left\{d(X_s,A)\leq\frac{1}{k}\right\}\in \mathcal{F}_s\subseteq \mathcal{F}_t$ because $X$ is adapted and $z\mapsto d(z,A)$ is measurable. + Thus, $\{T_A \leq t\}\in \mathcal{F}_t$ because it is a countable union and intersection of events in $\mathcal{F}_t$. + \end{proof} + \begin{theorem}[Doob's optional sampling theorem] + Let ${(M_t)}_{t\geq 0}$ be a continuous martingale and $T$ be a stopping time. Then, the \emph{stopped process} $M^T:={(M_{t\wedge T})}_{t\geq 0}$ is a continuous martingale. In particular, $\forall t\geq 0$, $\Exp(M_{t\wedge T})=\Exp(M_0)$. If $M^T$ is uniformly integrable and $T\overset{\text{a.s.}}{\leq}\infty$, then taking $t\to\infty$ we have $\Exp(M_T)=\Exp(M_0)$. + \end{theorem} \end{multicols} \end{document} \ No newline at end of file diff --git a/preamble_formulas.sty b/preamble_formulas.sty index 2c4bed5..c0fb201 100644 --- a/preamble_formulas.sty +++ b/preamble_formulas.sty @@ -282,7 +282,8 @@ \newcommand{\RR}{\ensuremath{\mathbb{R}}} % set of real numbers \newcommand{\CC}{\ensuremath{\mathbb{C}}} % set of complex numbers \newcommand{\KK}{\ensuremath{\mathbb{K}}} % a general field - +\newcommand{\TT}{\ensuremath{\mathbb{T}}} % time for stochastic processes +\renewcommand{\SS}{\ensuremath{\mathbb{S}}} % other things %%% TOPOLOGY \DeclareMathOperator{\Int}{Int} % interior set