diff --git a/Mathematics/5th/Advanced_topics_in_functional_analysis_and_PDEs/Advanced_topics_in_functional_analysis_and_PDEs.tex b/Mathematics/5th/Advanced_topics_in_functional_analysis_and_PDEs/Advanced_topics_in_functional_analysis_and_PDEs.tex index a6120f3..6be1ffb 100644 --- a/Mathematics/5th/Advanced_topics_in_functional_analysis_and_PDEs/Advanced_topics_in_functional_analysis_and_PDEs.tex +++ b/Mathematics/5th/Advanced_topics_in_functional_analysis_and_PDEs/Advanced_topics_in_functional_analysis_and_PDEs.tex @@ -78,7 +78,7 @@ $$ \end{proof} \begin{theorem} - Let $\Omega\subseteq \RR^d$ be a set and $1\frac{d}{m}$, then $W^{m,p}(\Omega)\hookrightarrow \mathcal{C}^{k-m,\theta}(\Omega)$, where $\theta=m-\frac{d}{p}-\ell$ and $\ell:=\left\lfloor m-\frac{d}{p}\right\rfloor$. + there is an embedding $W^{m,p}(\Omega)\hookrightarrow L^q(\Omega)$, where $\displaystyle\frac{1}{q}=\frac{1}{p}-\frac{m}{d}$. If $p>\frac{d}{m}$, then $W^{m,p}(\Omega)\hookrightarrow \mathcal{C}^{\ell,\theta} (\overline{\Omega})$, where $\ell:=\left\lfloor m-\frac{d}{p}\right\rfloor$ and $\theta:=m-\frac{d}{p}-\ell\in [0,1)$. \end{theorem} \begin{theorem}[Reillich-Kondrachov's compactness theorem]\label{ATFAPDE:reillich_kondrachov_compactness} Let $\Omega\subseteq \RR^d$ be a bounded domain with $\mathcal{C}^k$ boundary. Then, $\forall m\leq k$ we have: