From 0d28ad20180f8918addee85eb9a9ad59d6d92389 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?V=C3=ADctor?= Date: Sun, 19 Nov 2023 19:55:02 +0100 Subject: [PATCH] updated typos --- .../Introduction_to_nonlinear_elliptic_PDEs.tex | 15 ++++++--------- .../Numerical_methods_for_PDEs.tex | 2 +- 2 files changed, 7 insertions(+), 10 deletions(-) diff --git a/Mathematics/5th/Introduction_to_nonlinear_elliptic_PDEs/Introduction_to_nonlinear_elliptic_PDEs.tex b/Mathematics/5th/Introduction_to_nonlinear_elliptic_PDEs/Introduction_to_nonlinear_elliptic_PDEs.tex index 0cf735f..a345b0b 100644 --- a/Mathematics/5th/Introduction_to_nonlinear_elliptic_PDEs/Introduction_to_nonlinear_elliptic_PDEs.tex +++ b/Mathematics/5th/Introduction_to_nonlinear_elliptic_PDEs/Introduction_to_nonlinear_elliptic_PDEs.tex @@ -314,10 +314,7 @@ $$ \end{corollary} \begin{corollary} - Assume $a_{ij},b_j,c,f\in\mathcal{C}^\infty(\Omega)$. Let $u\in H^1(\Omega)$ be a weak solution of $Lu=f$. Then, $u\in \mathcal{C}^\infty(\Omega)$ and $\forall m\in \NN$: - $$ - \norm{u}_{H^{m}(\Omega)}\leq C\left(\norm{f}_{H^{m}(\Omega)}+\norm{u}_{L^2(\Omega)}\right) - $$ + Assume $a_{ij},b_j,c,f\in\mathcal{C}^\infty(\Omega)$. Let $u\in H^1(\Omega)$ be a weak solution of $Lu=f$. Then, $u\in \mathcal{C}^\infty(\Omega)$. \end{corollary} \begin{theorem}[Regularity up to the boundary] Assume that $\Fr{\Omega}$ is $\mathcal{C}^2$ and that $a_{ij}\in \mathcal{C}^1(\overline{\Omega})$, $b_j,c\in L^\infty(\Omega)$. Let $f\in L^2(\Omega)$ and $u\in H^1_0(\Omega)$ be a weak solution of $\mathcal{D}_f$. Then, $u\in H^2(\Omega)$ and: @@ -342,12 +339,12 @@ Let $\Omega\subseteq\RR^d$ open and $u\in H^1(\Omega)$. Then: $$ u^{+}:=\begin{cases} - u & \text{if }u\geq 0 \\ - 0 & \text{if }u<0 + u & \text{if }u> 0 \\ + 0 & \text{if }u\leq 0 \end{cases}\qquad u^{-}:=\begin{cases} - -u & \text{if }u\leq 0 \\ - 0 & \text{if }u>0 + -u & \text{if }u< 0 \\ + 0 & \text{if }u\leq 0 \end{cases} $$ are also in $H^1(\Omega)$ and: @@ -366,7 +363,7 @@ Let $\Omega\subseteq\RR^d$ open and $u\in H^1(\Omega)$. Then, $\abs{u}\in H^1(\Omega)$ and $\grad{\abs{u}}=\sign\grad{u}$. \end{corollary} \begin{lemma} - Let $(u_n)\in H^1(\Omega)$ be such that $u_n\overset{H^1(\Omega)}{\longrightarrow} u$. Then, $u_n^\pm\overset{H^1(\Omega)}{\longrightarrow} u^\pm$. + Let $(u_n)\in H^1(\Omega)$ be such that $u_n\overset{H^1(\Omega)}{\longrightarrow} u$. Then, ${u_n}^\pm\overset{H^1(\Omega)}{\longrightarrow} u^\pm$. \end{lemma} \begin{corollary} Let $u\in H^1(\Omega)$. Then, $\Tr_{\partial\Omega}(u^\pm)={(\Tr_{\partial\Omega}u)}^\pm$. diff --git a/Mathematics/5th/Numerical_methods_for_PDEs/Numerical_methods_for_PDEs.tex b/Mathematics/5th/Numerical_methods_for_PDEs/Numerical_methods_for_PDEs.tex index 2e796a3..989c72a 100644 --- a/Mathematics/5th/Numerical_methods_for_PDEs/Numerical_methods_for_PDEs.tex +++ b/Mathematics/5th/Numerical_methods_for_PDEs/Numerical_methods_for_PDEs.tex @@ -285,7 +285,7 @@ $$ \end{proposition} \begin{remark} - Note that ${(P_Nu)}'=P_Nu'$, but ${(I_Nu)}'\neq I_Nu'$. What we do in generall is to pass to the Fourier space, differentiate and then come back to the physical space. + Note that ${(P_Nu)}'=P_Nu'$, but ${(I_Nu)}'\neq I_Nu'$. What we do in general is to pass to the Fourier space, differentiate and then come back to the physical space. \end{remark} \subsubsection{Non-periodic problems} \begin{remark}