diff --git a/Mathematics/5th/Introduction_to_control_theory/Introduction_to_control_theory.tex b/Mathematics/5th/Introduction_to_control_theory/Introduction_to_control_theory.tex index f438458..ff5ab32 100644 --- a/Mathematics/5th/Introduction_to_control_theory/Introduction_to_control_theory.tex +++ b/Mathematics/5th/Introduction_to_control_theory/Introduction_to_control_theory.tex @@ -885,5 +885,69 @@ \end{enumerate} \end{theorem} \subsection{Backstepping for boundary control in PDEs} + \emph{Backstepping} consists in transforming a system into another one, called \emph{target system}, which has the desired stability properties. In order to study, we will be considering the following reaction-diffusion equation: + \begin{equation}\label{ICT:reaction_diffusion} + \begin{cases} + \partial_t x=x_{zz}+\lambda x & \text{in } (0,T)\times (0,1) \\ + x(t,0)=0 & \text{in } (0,T) \\ + x(t,1)=u(t) & \text{in } (0,T) + \end{cases} + \end{equation} + and we assume that $\lambda>0$ is large enough such that the system is unstable (the eigenvalues are of the form $\lambda-n^2\pi^2$ with $n\in\NN$). + + The first step is to choose a target system such that the origin is exponentially (or asymptotically) stable. We will consider the following target system: + \begin{equation}\label{ICT:target_system} + \begin{cases} + \partial_t w=w_{zz} & \text{in } (0,T)\times (0,1) \\ + w(t,0)=0 & \text{in } (0,T) \\ + w(t,1)=0 & \text{in } (0,T) + \end{cases} + \end{equation} + \begin{proposition} + The system \mcref{ICT:target_system} is exponentially stable for the $L^2$ norm. + \end{proposition} + \begin{proof} + We need to find a Lyapunov functional $V$ such that $\dot{V}\leq -\alpha V$ for some $\alpha>0$. We take $V(t)=\int_0^1 w(t,z)^2\dd z$. Then: + \begin{multline*} + \dot{V} = 2\int_0^1 w(t,z)w_t(t,z)\dd z=2\int_0^1 w(t,z)w_{zz}(t,z)\dd z \\ + = -2\int_0^1 w_z(t,z)^2\dd z\leq -\alpha V + \end{multline*} + for some $\alpha >0$, due to \mnameref{ATFAPDE:poincare_ineq}. + \end{proof} + Next step is to find a backstepping transformation $w=T(x)$ and the invertible operator $T^{-1}$. We will consider the following transformation: + \begin{equation}\label{ICT:backstepping_transformation} + w(z,t)=x(z,t)-\int_0^z K(z,y) x(y,t)\dd y + \end{equation} + where $K$ is a kernel yet to be determined. + \begin{proposition} + Let $f:[a,b]\to\CC$ be continuous and $K:[a,b]^2\to \CC$ be a bounded function. Then, the integral equation: + $$ + f(t) = \varphi(t)-\int_a^b K(t,s)\varphi(s) \dd s,\qquad t\in [a,b] + $$ + admits a unique solution $\varphi\in \mathcal{C}([a,b])$. Furthermore, there exists $\ell :[a,b]^2\to \CC$ bounded such that: + $$ + \varphi(t)=f(t)-\int_a^t \ell(t,s)f(s)\dd s, \qquad t\in [a,b] + $$ + \end{proposition} + Thus, our transformation is in \mcref{ICT:backstepping_transformation} is invertible. + + Finally, we need to define our control law. Imposing $w_z(1,t)=0$ in \mcref{ICT:backstepping_transformation} we get: + \begin{gather*} + 0=w_z(1,t)=x_z(1,t)-K(1,1)x(1,t)-\int_0^1 K_z(1,y)x(y,t)\dd y\\ + u(t)=K(1,1)x(1,t)+\int_0^1 K_z(1,y)x(y,t)\dd y + \end{gather*} + So, we are left to find if a suitable $K$ exists. Recall that the condition $w(1,t)=0$ is automatically satisfied. We need to make use of the PDE of $w$. Using \mcref{ICT:backstepping_transformation} to compute $w_t$ and $w_{zz}$, and equating both equations it suffices to find $K$ such that: + $$ + \begin{cases} + -2\dv{}{z}K(z,z)=\lambda\implies K(z,z)=-\frac{\lambda}{2}z \\ + K_{zz}=K_{yy}+\lambda K \\ + K(z,0)=0 + \end{cases} + $$ + which has a unique solution given by: + $$ + K(z,y)=-\lambda y\frac{I_1(\sqrt{\lambda(z^2-y^2)})}{\sqrt{\lambda(z^2-y^2)}} + $$ + where $I_1$ is the modified Bessel function of the first kind of order $1$. \end{multicols} \end{document} \ No newline at end of file