diff --git a/Mathematics/5th/Advanced_dynamical_systems/Advanced_dynamical_systems.tex b/Mathematics/5th/Advanced_dynamical_systems/Advanced_dynamical_systems.tex index c2d3b6a..36333b9 100644 --- a/Mathematics/5th/Advanced_dynamical_systems/Advanced_dynamical_systems.tex +++ b/Mathematics/5th/Advanced_dynamical_systems/Advanced_dynamical_systems.tex @@ -495,7 +495,7 @@ $$ \end{remark} \begin{definition} - Let $F\in \Homeo(\TT^1)$ and $X\subseteq \TT^1$ be closed and invariant. We say that $X$ is \emph{minimal} if $\forall x\in X$, $\overline{\mathcal{O}(x)}=X$. If $X=\TT^1$, we say that $F$ is \emph{minimal}. + Let $F\in \Homeo(\TT^1)$ and $X\subseteq \TT^1$ be nonempty closed invariant set. We say that $X$ is \emph{minimal} if $\forall x\in X$, $\overline{\mathcal{O}(x)}=X$. If $X=\TT^1$, we say that $F$ is \emph{minimal}. \end{definition} \begin{proposition} Let $F\in \Homeo(\TT^1)$ and $X\subseteq \TT^1$ be a closed and invariant. Then, $X$ is minimal $\iff$ $\forall Y\subseteq X$ closed, invariant and non-empty, $Y=X$. @@ -512,5 +512,66 @@ Now we do the general case. Assume $\rho(f)=\frac{p}{q}$. Then, again by \mcref{ADS:characterisation_rot_number}, we have that $\exists x\in \RR$ with $f^q(x)=x+p$. Assume we have $x'\in\RR$ and $p',q'\in\ZZ$ with $q'\geq 1$ such that $f^{q'}(x')=x'+p'$. By \mcref{ADS:characterisation_rot_number}, we have that $\frac{p}{q}=\frac{p'}{q'}$ and so $\exists k\in\NN$ such that $q'=kq$ and $p'=kp'$ because $\frac{p}{q}$ is irreducible. Now let $g=f^q-p$. Then, an easy calculation shows that $g^k(x')=x'$. But $\rho(g)=0$ and in the previous case we have seen that the periodic points are only fixed points, so $k=1$. For the second part, we proceed as in the previous case with the function $g=f^q-p$. \end{proof} + \subsubsection{Irrational rotation number} + \begin{definition} + Given $\mu\in \mathcal{M}(\TT^1)$ and $U\subseteq \TT^1$ open, we define the \emph{measure of $U$} as: + $$ + \mu(U):=\sup\{\mu(\varphi):\varphi\in\mathcal{C}(\TT^1),\varphi\leq \indi{U}\} + $$ + Let $A\subset \mathcal{B}(\TT^1)$ be a Borel measurable set. We define the \emph{measure of $A$} as: + $$ + \mu(A):=\inf\{\mu(U):A\subseteq U, U\text{ open}\} + $$ + \end{definition} + \begin{remark} + With this definition we have the usual properties of measure defined on subsets of $\TT^1$. In particular, $\text{Leb}([a,b])=b-a$ and $\delta_x(A)=\indi{x\in A}$ $\forall x\in \TT^1$ and $A\subseteq \TT^1$. + \end{remark} + \begin{definition} + Let $\mu\in \mathcal{M}(\TT^1)$. We define the \emph{support of $\mu$} as: + $$ + \supp\mu:=\{x\in\TT^1:\forall U\subseteq \TT^1\text{ open with } x\in U,\mu(U)>0\} + $$ + \end{definition} + \begin{remark} + Note that $\supp\mu $ is a closed set. + \end{remark} + \begin{remark} + $\supp\text{Leb}=\TT^1$ and $\supp\delta_{x}=\{x\}$. + \end{remark} + \begin{proposition} + Let $\mu\in \mathcal{M}(\TT^1)$ and $F\in\Homeo(\TT^1)$. $\mu$ is invariant by $F$ if and only if $\forall A\subseteq \TT^1$ Borel set, $\mu(A)=\mu(F^{-1}(A))$. + \end{proposition} + \begin{lemma} + Let $\mu\in \mathcal{M}(\TT^1)$. We have a lift to a measure $\mu$ on $\RR$ invariant by integer translations: $\mu(A+k)=\mu(A)$ $\forall k\in\ZZ$ and $A\subseteq \mathcal{B}(\RR)$. + \end{lemma} + \begin{definition} + Let $\mu\in\mathcal{M}(\TT^1)$. We define $h_\mu:[0,1]\to [0,1]$ as the function with $h_\mu(0)=0$ and $h_\mu(x)=\mu([0,x))$ for $00$ + \end{lemma} + \begin{lemma}\label{ADS:lemma_atom} + Let $\mu\in\mathcal{M}(\TT^1)$. $h_\mu$ is continuous if and only if $\forall x\in\RR$, $\mu(\{x\})=0$, that is $\mu$ has no atoms. + \end{lemma} + \begin{definition} + A subset $C\subseteq \RR$ is a \emph{Cantor set} if it is closed, it has no isolated points and it has empty interior. + \end{definition} + \begin{theorem} + Let $F\in\Homeo(\TT^1)$ with $\rho(F)\notin\quot{\QQ}{\ZZ}$. Then, there exists a surjective continuous map $H:\TT^1\to \TT^1$ such that $H\circ F=R_{\rho(F)}\circ H$. Moreover, we have exactly one of the following two properties: + \begin{enumerate} + \item $F$ is conjugated to $R_{\rho(F)}$ and in that case $F$ is minimal. + \item $\exists X\subsetneq \TT^1$ minimal which is a Cantor set and $X=\Omega(F)$. + \end{enumerate} + \end{theorem} + \begin{proof} + Let $\mu\in\mathcal{M}_F(\TT^1)$ and consider $h_\mu:\RR\to\RR$ as defined above. Now assume $x\in \TT^1$ is such that $\mu(\{x\})=c>0$, then by invariance $\mu(A_n)=c>0$, where $A_n:=\{F^n(x)\}$. Note that since $\mu\leq 1$, $(A_n)$ cannot be disjoint. So $\exists n,m\in\NN$ with $n