-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
377 lines (344 loc) · 12.6 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning a 🤗 Transformers model for sequence classification on GLUE."""
import argparse
import logging
import math
import os
import random
import shutil
import time
import json
import datasets
from datasets import load_dataset, load_metric
import torch
import torch.nn.functional as F
from torch.utils.data.dataloader import DataLoader
from tqdm.auto import tqdm
import transformers
from accelerate import Accelerator
from transformers import (
AdamW,
AutoConfig,
AutoTokenizer,
DataCollatorWithPadding,
PretrainedConfig,
SchedulerType,
default_data_collator,
get_scheduler,
set_seed,
)
from models import RobertaForPromptFinetuning
from prompting import MultiLabelPrompting
from utils import task_input_key, task_label_key, task_metric
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser(description="Finetune a transformers model on a text classification task")
parser.add_argument(
"--task_name",
type=str,
default=None,
help="The name of the glue task to train on.",
)
parser.add_argument(
"--data_dir",
type=str,
default=None,
required=True,
help="A dictionary containing the training, validation, test data."
)
parser.add_argument(
"--model_name_or_path",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
required=True,
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=8,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=8,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--weight_decay",
type=float,
default=0.0,
help="Weight decay to use.")
parser.add_argument(
"--num_train_epochs",
type=int,
default=3,
help="Total number of training epochs to perform.")
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps",
type=int,
default=0,
help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--output_dir",
type=str,
default=None,
help="Where to store the final model."
)
parser.add_argument(
"--seed",
type=int,
default=None,
help="A seed for reproducible training."
)
parser.add_argument(
"--shot_num",
type=int,
default=None,
required=True,
help="The number of shots to use for training."
)
parser.add_argument(
"--top_k",
type=int,
default=10,
help="Select top k label token for each class."
)
parser.add_argument(
"--eval_steps",
type=int,
default=None,
help="The number of steps to use for evaluation."
)
parser.add_argument(
"--logging_loss_steps",
type=int,
default=10,
help="The number of steps to use for logging the loss."
)
parser.add_argument(
"--template",
type=str,
default=None,
help="The template to use for the output file."
)
parser.add_argument(
"--dedup",
action="store_true",
default=False,
help="Whether to dedup label tokens."
)
parser.add_argument(
"--random_k_token",
action='store_true',
default=False,
help="Whether to random select k label tokens."
)
parser.add_argument(
"label_token_mode",
type=str,
choices=["AMuLaP", "AutoL", "PETAL"],
default="AMuLaP",
help="How to get the label token."
)
parser.add_argument(
"--mapping_path",
type=str,
default=None,
help="The path to the label token mapping file."
)
parser.add_argument(
"--max_seq_len",
type=int,
default=128,
help="The maximum sequence length."
)
parser.add_argument(
"--first_sent_limit",
type=int,
default=None,
help="The maximum first sentence length."
)
parser.add_argument(
"--other_sent_limit",
type=int,
default=None,
help="The maximum other sentence length."
)
parser.add_argument(
"--no_finetune",
action="store_true",
default=False,
help="Whether to finetune the model."
)
args = parser.parse_args()
if args.output_dir is not None:
args.logging_dir = os.path.join(args.output_dir, "logging", args.task_name, str(args.shot_num) + "-" + str(args.seed))
os.makedirs(args.logging_dir, exist_ok=True)
if not args.no_finetune:
dir_name = "trainstep{}_warmupstep{}_lr{}_pbs{}".format(args.max_train_steps, args.num_warmup_steps, args.learning_rate, args.per_device_train_batch_size)
dir_name += "_topk{}".format(args.top_k)
dir_name += "_" + args.label_token_mode
if args.label_token_mode == "AMuLaP":
dir_name += "_random" if args.random_k_token else ""
dir_name += "_dedup" if args.dedup else ""
args.output_dir = os.path.join(args.output_dir, args.task_name, str(args.shot_num) + "-" + str(args.seed), dir_name)
os.makedirs(args.output_dir, exist_ok=True)
return args
def load_data(task_name, data_dir):
if task_name in ["sst2", "cola", "mrpc", "qnli", "qqp", "rte"]:
data_files = {
"train": os.path.join(data_dir, "train.tsv"),
"dev": os.path.join(data_dir, "dev.tsv"),
"test": os.path.join(data_dir, "test.tsv"),
}
elif task_name in ["mnli"]:
data_files = {
"train": os.path.join(data_dir, "train.tsv"),
"dev": os.path.join(data_dir, "dev_matched.tsv"),
"test_m": os.path.join(data_dir, "test_matched.tsv"),
"test_mm": os.path.join(data_dir, "test_mismatched.tsv"),
}
if task_name in ["sst2", "mnli", "mrpc", "qnli", "qqp", "rte"]:
dataset = load_dataset('csv', data_files=data_files, delimiter='\t', quoting=3)
elif task_name in ["cola"]:
dataset = load_dataset('csv', data_files=data_files, delimiter='\t', column_names=["id", "label", "_", "sentence"])
return dataset
def trim_batch(
input_ids,
pad_token_id,
attention_mask=None,
):
"""Remove columns that are populated exclusively by pad_token_id"""
keep_column_mask = input_ids.ne(pad_token_id).any(dim=0)
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
def main():
args = parse_args()
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
accelerator = Accelerator()
# Make one log on every process with the configuration for debugging.
# logging_dir = os.path.join(args.output_dir, "logging", args.task_name, str(args.shot_num) + "-" + str(args.seed))
# os.makedirs(logging_dir, exist_ok=True)
filename = None
if args.no_finetune:
filename = "no_finetune"
else:
filename = "trainstep{}_warmupstep{}_lr{}_pbs{}".format(args.max_train_steps, args.num_warmup_steps, args.learning_rate, args.per_device_train_batch_size)
filename += "_topk{}".format(args.top_k)
filename += "_" + args.label_token_mode
if args.label_token_mode == "AMuLaP":
filename += "_random" if args.random_k_token else ""
filename += "_dedup" if args.dedup else ""
filename += ".log"
logging_filename = os.path.join(args.logging_dir, filename)
logging.basicConfig(
filename=logging_filename,
filemode="w",
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
raw_datasets = load_data(args.task_name, args.data_dir)
label2id = None
labels = raw_datasets["train"][task_label_key[args.task_name]]
labels = list(set(labels))
label2id = {label: i for i, label in enumerate(labels)}
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(args.model_name_or_path, num_labels=len(label2id), finetuning_task=args.task_name)
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=False)
model = RobertaForPromptFinetuning.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
)
prompting = MultiLabelPrompting(model, tokenizer, label2id)
def preprocessing(examples):
return prompting.preprocess(
examples,
input_key = task_input_key[args.task_name],
label_key = task_label_key[args.task_name],
max_length = args.max_length,
template = args.template,
first_sent_limit = args.first_sent_limit,
other_sent_limit = args.other_sent_limit
)
processed_datasets = raw_datasets.map(
preprocessing,
batched=True,
remove_columns=raw_datasets["train"].column_names,
)
train_dataset = processed_datasets["train"]
eval_dataset = processed_datasets["dev"]
# Log a few random samples from the training set:
for index in random.sample(range(len(train_dataset)), 1):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
# DataLoaders creation:
data_collator = default_data_collator
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size
)
eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size)
optimizer = prompting.create_optimizer(lr=args.learning_rate, weight_decay=args.weight_decay)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
prompting.model, optimizer, train_dataloader, eval_dataloader
)
k_map = prompting.top_k_index(model, train_dataloader, eval_dataloader, args.top_k, args.shot_num, args.label_token_mode, args.mapping_path, args.dedup, args.random_k_token)