forked from geekpradd/Visual-Sudoku-Solver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneuralNetwork.cpp
213 lines (178 loc) · 6.85 KB
/
neuralNetwork.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#define push_back pb
#include <bits/stdc++.h>
using namespace std;
typedef unsigned char uchar;
int ReverseInt (int i)
{
unsigned char ch1, ch2, ch3, ch4;
ch1=i&255;
ch2=(i>>8)&255;
ch3=(i>>16)&255;
ch4=(i>>24)&255;
return((int)ch1<<24)+((int)ch2<<16)+((int)ch3<<8)+ch4;
}
vector<vector<int> > read_mnist_images(string full_path, int number_of_images, int image_size) {
ifstream file(full_path, ios::binary);
if(file.is_open()) {
int magic_number = 0, n_rows = 0, n_cols = 0;
file.read((char *)&magic_number, sizeof(magic_number));
magic_number = ReverseInt(magic_number);
if(magic_number != 2051) throw runtime_error("Invalid MNIST image file!");
file.read((char *)&number_of_images, sizeof(number_of_images)); number_of_images = ReverseInt(number_of_images);
file.read((char *)&n_rows, sizeof(n_rows)); n_rows = ReverseInt(n_rows);
file.read((char *)&n_cols, sizeof(n_cols)); n_cols = ReverseInt(n_cols);
image_size = n_rows * n_cols;
vector<vector<int> > _dataset(number_of_images, vector<int>(image_size));
for(int i = 0; i < number_of_images; i++) {
for (int j = 0; j < image_size; j++)
file.read((char *)&_dataset[i][j], 1);
}
return _dataset;
} else {
throw runtime_error("Cannot open file `" + full_path + "`!");
}
}
int* read_mnist_labels(string full_path, int number_of_labels) {
ifstream file(full_path, ios::binary);
if(file.is_open()) {
int magic_number = 0;
file.read((char *)&magic_number, sizeof(magic_number));
magic_number = ReverseInt(magic_number);
if(magic_number != 2049) throw runtime_error("Invalid MNIST label file!");
file.read((char *)&number_of_labels, sizeof(number_of_labels)), number_of_labels = ReverseInt(number_of_labels);
int* _dataset = new int[number_of_labels];
for(int i = 0; i < number_of_labels; i++) {
file.read((char*)&_dataset[i], 1);
}
return _dataset;
} else {
throw runtime_error("Unable to open file `" + full_path + "`!");
}
}
int num_layers = 4;
int nl1 = 784;
int nl2 = 300;
int nl3 = 100;
int nl4 = 10;
int nl[4] = {784, 300, 100, 10};
int vn = nl1*nl2+nl2*nl3+nl3*nl4+nl2+nl3+nl4; // total no of weights and biases
double eta = 3;
double sigmoid(double z) {
return 1/(1+exp(-z));
//return (z < 0) ? 0 : z;
}
void backProp(vector <vector<double> > &l, vector <vector<vector<double> > > &w, vector <vector<double> > & del, int y[], int level) {
if (level == 1) return;
if (level == num_layers) {
for (int i=0; i < del[level-1].size(); i++) {
double ajL = l[level-1][i];
del[level-1][i] = ajL*(1 - ajL)*(ajL - y[i]);
}
}
else {
for (int i=0; i < del[level-1].size(); i++) {
double sum = 0;
for (int k=0; k < del[level].size(); k++) {
sum += (w[level-1][k][i] * del[level][k]);
}
double ajL = l[level-1][i];
del[level-1][i] = sum * ajL * (1 - ajL);
}
}
backProp(l, w, del, y, level-1);
}
void feedforward(vector <vector<double> > &l, vector <vector<vector<double> > > &w, vector <vector<double> > &b) {
for (int i=1; i < l.size(); i++) {
for (int j=0; j < l[i].size(); j++) {
l[i][j] = b[i-1][j];
for (int k = 0; k < l[i-1].size(); k++) {
l[i][j] += w[i-1][j][k]*l[i-1][k];
}
l[i][j] = sigmoid(l[i][j]);
}
}
}
vector<double> calcGradient(vector <vector<double> > &l, vector <vector<double> > &del) {
vector<double> grad(vn, 0);
for (int i=0; i < vn; i++) {
if (i < nl2*nl1) grad[i] = l[0][i%nl1] * del[1][i/nl1];
else if (i - nl2*nl1 < nl2*nl3) grad[i] = l[1][(i - nl2*nl1)%nl2] * del[2][(i - nl2*nl1)/nl2];
else if (i - nl2*nl1 - nl2*nl3 < nl3*nl4) grad[i] = l[2][(i - nl2*nl1 - nl3*nl2)%nl3] * del[3][(i - nl2*nl1 - nl3*nl2)/nl3];
else {
int j = i - nl2*nl1 - nl2*nl3 - nl3*nl4;
if (j < nl2) grad[i] = del[1][j];
else if (j < nl2+nl3) grad[i] = del[2][j-nl2];
else grad[i] = del[3][j-nl2-nl3];
}
}
return grad;
}
int main() {
srand(time(0));
vector<double> l1(nl1, 0), l2(nl2, 0), l3(nl3, 0), l4(nl4, 0); //neurons
vector<double> del1(nl1, 0), del2(nl2, 0), del3(nl3, 0), del4(nl4, 0); //deltas
vector<double> b2(nl2, 0), b3(nl3, 0), b4(nl4, 0); //biases
vector<vector <double> > w1(nl2, l1), w2(nl3, l2), w3(nl4, l3); //weights
vector <vector<double> > layers;
layers.pb(l1); layers.pb(l2); layers.pb(l3); layers.pb(l4);
vector <vector<double> > deltas;
deltas.pb(del1); deltas.pb(del2); deltas.pb(del3); deltas.pb(del4);
vector <vector<vector<double> > > weights;
weights.pb(w1); weights.pb(w2); weights.pb(w3);
vector <vector<double> > biases;
biases.pb(b2); biases.pb(b3); biases.pb(b4);
for (int i=0; i<3; i++) {
for(int j = 0; j < weights[i].size(); j++) {
for (int k =0; k < weights[i][j].size(); k++) {
weights[i][j][k] = (rand()*6.0/RAND_MAX - 3) * sqrt(2/nl[i]);
}
}
}
double* all_wnb[vn]; // references to all weights and biases
vector<vector<int> > ar = read_mnist_images("train-images-idx3-ubyte", 60000, 784);
int* labels = read_mnist_labels("train-labels-idx1-ubyte", 60000);
for (int i=0; i<vn; i++) {
if (i < nl2*nl1) all_wnb[i] = &weights[0][i/nl1][i%nl1];
else if (i - nl2*nl1 < nl2*nl3) all_wnb[i] = &weights[1][(i - nl2*nl1)/nl2][(i - nl2*nl1)%nl2];
else if (i - nl2*nl1 - nl2*nl3 < nl3*nl4) all_wnb[i] = &weights[2][(i - nl2*nl1 - nl3*nl2)/nl3][(i - nl2*nl1 - nl3*nl2)%nl3];
else {
int j = i - nl2*nl1 - nl2*nl3 - nl3*nl4;
if (j < nl2) all_wnb[i] = &biases[0][j];
else if (j < nl2+nl3) all_wnb[i] = &biases[1][j-nl2];
else all_wnb[i] = &biases[2][j-nl2-nl3];
}
}
int mini_batch = 100; // no of test cases in each mini batch
int n_of_mb = 30; // no of mini batches
int y[10]; // for storing correct answer
for (int k = 0; k < n_of_mb; k++) {
vector<double> gradSum(vn, 0); // list of gradients for a particular mini batch
for (int i=0; i < mini_batch; i++) {
for (int j=0; j<nl1; j++) layers[0][j] = ar[mini_batch*k+i][j]/255.0;//cin >> layers[0][j];
feedforward(layers, weights, biases);
for (int j=0; j<10; j++) y[j] = 0;//cin >> y[j];
y[labels[mini_batch*k+i]] = 1;
backProp(layers, weights, deltas, y, num_layers);
vector<double> gr = calcGradient(layers, deltas);
for (int i2=0; i2 < vn; i2++) {
gradSum[i2] += gr[i2];
}
//transform(gradSum.begin(), gradSum.end(), gr.begin(), gradSum.begin(), plus<double>());
}
for (int i=0; i < vn; i++)
*all_wnb[i] -= gradSum[i] * eta / mini_batch;
}
fstream file;
file.open("wnb.txt", ios::trunc | ios::out | ios::in);
if (file) {
for (int i=0; i<vn; i++) file << *all_wnb[i] << ' ';
}
else cout << "Error creating file" << endl;
for (int c = 0; c < 10; c++) {
for (int i=0; i<nl1; i++) layers[0][i] = ar[c+3000][i];
feedforward(layers, weights, biases);
for (int i=0; i<10; i++) cout << layers[3][i] << ' ';
cout << endl << labels[c+3000] << endl;
}
return 0;
}