forked from geekpradd/Visual-Sudoku-Solver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdigit_recognizer2.py
37 lines (28 loc) · 941 Bytes
/
digit_recognizer2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import cv2
import numpy as np
neurons = []
biases = []
weights = []
l_size = [2500, 100, 100, 10]
num_layers = len(l_size)
def sigmoid(z):
return 1.0/(1.0+np.exp(-z))
def feedforward(neurons, weights, biases):
for l in range(1, num_layers):
neurons[l] = sigmoid(np.dot(weights[l], neurons[l-1].T) + biases[l])
return neurons
for i in l_size:
neurons.append(np.full(i, 0.0))
weights = np.load("weights2.npz", allow_pickle=True)["arr_0"]
biases = np.load("biases2.npz", allow_pickle=True)["arr_0"]
for i in range(1, 10):
ret, img = cv2.threshold(cv2.equalizeHist(cv2.imread('digits/p'+str(i)+'.jpg', 0)), 23, 255, cv2.THRESH_BINARY_INV)
resized = cv2.resize(img, (50, 50))
# cv2.imshow("image", resized)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
neurons[0] = np.divide(resized[resized > -1], 255.0)
neurons = feedforward(neurons, weights, biases)
print(np.argmax(neurons[num_layers-1]))
print(neurons[3])
print("\n")