-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdatasets.py
685 lines (625 loc) · 35.7 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
from torchvision import transforms, datasets
from args import args
import numpy as np
import torch
import json
import os
class CPUDataset():
def __init__(self, data, targets, transforms = [], batch_size = args.batch_size, use_hd = False):
self.data = data
if torch.is_tensor(data):
self.length = data.shape[0]
else:
self.length = len(self.data)
self.targets = targets
assert(self.length == targets.shape[0])
self.batch_size = batch_size
self.transforms = transforms
self.use_hd = use_hd
def __getitem__(self, idx):
if self.use_hd:
elt = transforms.ToTensor()(np.array(Image.open(self.data[idx]).convert('RGB')))
else:
elt = self.data[idx]
return self.transforms(elt), self.targets[idx]
def __len__(self):
return self.length
class EpisodicCPUDataset():
def __init__(self, data, num_classes, transforms = [], episode_size = args.batch_size, use_hd = False):
self.data = data
if torch.is_tensor(data):
self.length = data.shape[0]
else:
self.length = len(self.data)
self.episode_size = (episode_size // args.n_ways) * args.n_ways
self.transforms = transforms
self.use_hd = use_hd
self.num_classes = num_classes
self.targets = []
self.indices = []
self.corrected_length = args.episodes_per_epoch * self.episode_size
episodes = args.episodes_per_epoch
for i in range(episodes):
classes = np.random.permutation(np.arange(self.num_classes))[:args.n_ways]
for c in range(args.n_ways):
class_indices = np.random.permutation(np.arange(self.length // self.num_classes))[:self.episode_size // args.n_ways]
self.indices += list(class_indices + classes[c] * (self.length // self.num_classes))
self.targets += [c] * (self.episode_size // args.n_ways)
self.indices = np.array(self.indices)
self.targets = np.array(self.targets)
def generate_next_episode(self, idx):
if idx >= args.episodes_per_epoch:
idx = 0
classes = np.random.permutation(np.arange(self.num_classes))[:args.n_ways]
n_samples = (self.episode_size // args.n_ways)
for c in range(args.n_ways):
class_indices = np.random.permutation(np.arange(self.length // self.num_classes))[:self.episode_size // args.n_ways]
self.indices[idx * self.episode_size + c * n_samples: idx * self.episode_size + (c+1) * n_samples] = (class_indices + classes[c] * (self.length // self.num_classes))
def __getitem__(self, idx):
if idx % self.episode_size == 0:
self.generate_next_episode((idx // self.episode_size) + 1)
if self.use_hd:
elt = transforms.ToTensor()(np.array(Image.open(self.data[self.indices[idx]]).convert('RGB')))
else:
elt = self.data[self.indices[idx]]
return self.transforms(elt), self.targets[idx]
def __len__(self):
return self.corrected_length
class Dataset():
def __init__(self, data, targets, transforms = [], batch_size = args.batch_size, shuffle = True, device = args.dataset_device):
if torch.is_tensor(data):
self.length = data.shape[0]
self.data = data.to(device)
else:
self.length = len(self.data)
self.targets = targets.to(device)
assert(self.length == targets.shape[0])
self.batch_size = batch_size
self.transforms = transforms
self.permutation = torch.arange(self.length)
self.n_batches = self.length // self.batch_size + (0 if self.length % self.batch_size == 0 else 1)
self.shuffle = shuffle
def __iter__(self):
if self.shuffle:
self.permutation = torch.randperm(self.length)
for i in range(self.n_batches):
if torch.is_tensor(self.data):
yield self.transforms(self.data[self.permutation[i * self.batch_size : (i+1) * self.batch_size]]), self.targets[self.permutation[i * self.batch_size : (i+1) * self.batch_size]]
else:
yield torch.stack([self.transforms(self.data[x]) for x in self.permutation[i * self.batch_size : (i+1) * self.batch_size]]), self.targets[self.permutation[i * self.batch_size : (i+1) * self.batch_size]]
def __len__(self):
return self.n_batches
class EpisodicDataset():
def __init__(self, data, num_classes, transforms = [], episode_size = args.batch_size, device = args.dataset_device, use_hd = False):
if torch.is_tensor(data):
self.length = data.shape[0]
self.data = data.to(device)
else:
self.data = data
self.length = len(self.data)
self.episode_size = episode_size
self.transforms = transforms
self.num_classes = num_classes
self.n_batches = args.episodes_per_epoch
self.use_hd = use_hd
self.device = device
def __iter__(self):
for i in range(self.n_batches):
classes = np.random.permutation(np.arange(self.num_classes))[:args.n_ways]
indices = []
for c in range(args.n_ways):
class_indices = np.random.permutation(np.arange(self.length // self.num_classes))[:self.episode_size // args.n_ways]
indices += list(class_indices + classes[c] * (self.length // self.num_classes))
targets = torch.repeat_interleave(torch.arange(args.n_ways), self.episode_size // args.n_ways).to(self.device)
if torch.is_tensor(self.data):
yield self.transforms(self.data[indices]), targets
else:
if self.use_hd:
yield torch.stack([self.transforms(transforms.ToTensor()(np.array(Image.open(self.data[x]).convert('RGB'))).to(self.device)) for x in indices]), targets
else:
yield torch.stack([self.transforms(self.data[x].to(self.device)) for x in indices]), targets
def __len__(self):
return self.n_batches
def iterator(data, target, transforms, forcecpu = False, shuffle = True, use_hd = False):
if args.dataset_device == "cpu" or forcecpu:
dataset = CPUDataset(data, target, transforms, use_hd = use_hd)
return torch.utils.data.DataLoader(dataset, batch_size = args.batch_size, shuffle = shuffle, num_workers = min(8, os.cpu_count()))
else:
return Dataset(data, target, transforms, shuffle = shuffle)
def episodic_iterator(data, num_classes, transforms, forcecpu = False, use_hd = False):
if args.dataset_device == "cpu" or forcecpu:
dataset = EpisodicCPUDataset(data, num_classes, transforms, use_hd = use_hd)
return torch.utils.data.DataLoader(dataset, batch_size = (args.batch_size // args.n_ways) * args.n_ways, shuffle = False, num_workers = min(8, os.cpu_count()))
else:
return EpisodicDataset(data, num_classes, transforms, use_hd = use_hd)
def create_dataset(train_data, test_data, train_targets, test_targets, train_transforms, test_transforms):
train_loader = iterator(train_data[:args.dataset_size], train_targets[:args.dataset_size], transforms = train_transforms)
val_loader = iterator(train_data, train_targets, transforms = test_transforms)
test_loader = iterator(test_data, test_targets, transforms = test_transforms)
return train_loader, val_loader, test_loader
import random
def mnist():
train_loader = datasets.MNIST(args.dataset_path, train = True, download = True)
train_data = (train_loader.data.float() / 256).unsqueeze(1)
train_targets = torch.LongTensor(train_loader.targets.clone())
if args.dataset_size >= 0:
data_per_class = []
test = []
for i in range(10):
data_per_class.append(train_data[torch.where(train_targets == i)[0]][:args.dataset_size // 10])
test.append(torch.zeros(args.dataset_size // 10) + i)
train_data = torch.stack(data_per_class, dim = 1).view(args.dataset_size, 1, 28, 28)
train_targets = torch.arange(10).repeat(args.dataset_size // 10)
test_loader = datasets.MNIST(args.dataset_path, train = False, download = True)
test_data = (test_loader.data.float() / 256).unsqueeze(1)
test_targets = torch.LongTensor(test_loader.targets.clone())
all_transforms = transforms.Normalize((0.1302,), (0.3069,))
loaders = create_dataset(train_data, test_data, train_targets, test_targets, all_transforms, all_transforms)
return loaders, train_data.shape[1:], torch.max(train_targets).item() + 1, False, False
def fashion_mnist(data_augmentation = True):
train_loader = datasets.FashionMNIST(args.dataset_path, train = True, download = True)
train_data = (train_loader.data.float() / 256).unsqueeze(1)
train_targets = torch.LongTensor(train_loader.targets)
if args.dataset_size >= 0:
data_per_class = []
test = []
for i in range(10):
data_per_class.append(train_data[torch.where(train_targets == i)[0]][:args.dataset_size // 10])
test.append(torch.zeros(args.dataset_size // 10) + i)
train_data = torch.stack(data_per_class, dim = 1).view(args.dataset_size, 1, 28, 28)
train_targets = torch.arange(10).repeat(args.dataset_size // 10)
test_loader = datasets.FashionMNIST(args.dataset_path, train = False, download = True)
test_data = (test_loader.data.float() / 256).unsqueeze(1)
test_targets = torch.LongTensor(test_loader.targets)
norm = transforms.Normalize((0.2849,), (0.3516,))
if data_augmentation:
list_trans_train = torch.nn.Sequential(transforms.RandomCrop(28, padding=4), transforms.RandomHorizontalFlip(), norm)
all_transforms = norm
loaders = create_dataset(train_data, test_data, train_targets, test_targets, list_trans_train, all_transforms)
return loaders, train_data.shape[1:], torch.max(train_targets).item() + 1, False, False
def cifar10(data_augmentation = True):
train_loader = datasets.CIFAR10(args.dataset_path, train = True, download = True)
train_data = torch.stack(list(map(transforms.ToTensor(), train_loader.data)))
train_targets = torch.LongTensor(train_loader.targets)
if args.dataset_size >= 0:
data_per_class = []
test = []
for i in range(10):
data_per_class.append(train_data[torch.where(train_targets == i)[0]][:args.dataset_size // 10])
test.append(torch.zeros(args.dataset_size // 10) + i)
train_data = torch.stack(data_per_class, dim = 1).view(args.dataset_size, 3, 32, 32)
train_targets = torch.arange(10).repeat(args.dataset_size // 10)
test_loader = datasets.CIFAR10(args.dataset_path, train = False, download = True)
test_data = torch.stack(list(map(transforms.ToTensor(), test_loader.data)))
test_targets = torch.LongTensor(test_loader.targets)
norm = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2616))
if data_augmentation:
list_trans_train = torch.nn.Sequential(transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), norm)
else:
list_trans_train = norm
loaders = create_dataset(train_data, test_data, train_targets, test_targets, list_trans_train, norm)
return loaders, train_data.shape[1:], torch.max(train_targets).item() + 1, False, False
def cifar100(data_augmentation = True):
train_loader = datasets.CIFAR100(args.dataset_path, train = True, download = True)
train_data = torch.stack(list(map(transforms.ToTensor(), train_loader.data)))
train_targets = torch.LongTensor(train_loader.targets)
if args.dataset_size >= 0:
data_per_class = []
test = []
for i in range(10):
data_per_class.append(train_data[torch.where(train_targets == i)[0]][:args.dataset_size // 10])
test.append(torch.zeros(args.dataset_size // 10) + i)
train_data = torch.stack(data_per_class, dim = 1).view(args.dataset_size, 3, 32, 32)
train_targets = torch.arange(10).repeat(args.dataset_size // 10)
test_loader = datasets.CIFAR100(args.dataset_path, train = False, download = True)
test_data = torch.stack(list(map(transforms.ToTensor(), test_loader.data)))
test_targets = torch.LongTensor(test_loader.targets)
norm = transforms.Normalize((0.5071, 0.4865, 0.4409), (0.2673, 0.2564, 0.2762))
if data_augmentation:
list_trans_train = torch.nn.Sequential(transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), norm)
else:
list_trans_train = norm
loaders = create_dataset(train_data, test_data, train_targets, test_targets, list_trans_train, norm)
return loaders, train_data.shape[1:], torch.max(train_targets).item() + 1, False, True
from PIL import Image
def cifarfs(use_hd=True, data_augmentation=True):
"""
CIFAR FS dataset
Number of classes :
- train: 64
- val : 16
- novel: 20
Number of samples per class: exactly 600
Total number of images: 60000
Images size : 32x32
"""
datasets = {}
classes = []
total = 60000
buffer = {'train':0, 'val':64, 'test':64+16}
for metaSub in ["meta-train", "meta-val", "meta-test"]:
subset = metaSub.split('-')[-1]
data = []
target = []
subset_path = os.path.join(args.dataset_path, 'cifar_fs', metaSub)
classe_files = os.listdir(subset_path)
for c, classe in enumerate(classe_files):
files = os.listdir(os.path.join(subset_path, classe))
count = 0
for file in files:
count += 1
target.append(c+buffer[subset])
path = os.path.join(subset_path, classe, file)
if not use_hd:
image = transforms.ToTensor()(np.array(Image.open(path).convert('RGB')))
data.append(image)
else:
data.append(path)
datasets[subset] = [data, torch.LongTensor(target)]
assert (len(datasets['train'][0])+len(datasets['val'][0])+len(datasets['test'][0])==total), 'Total number of sample per class is not 600'
image_size = 32
norm = transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
train_transforms = torch.nn.Sequential(transforms.RandomResizedCrop(image_size),
transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),
transforms.RandomHorizontalFlip(),
norm)
all_transforms = torch.nn.Sequential(transforms.Resize([int(1.15*image_size), int(1.15*image_size)]),
transforms.CenterCrop(image_size),
norm) if args.sample_aug == 1 else torch.nn.Sequential(transforms.RandomResizedCrop(image_size, scale=(0.14,1)), norm)
if args.episodic:
train_loader = episodic_iterator(datasets['train'][0], 64, transforms = train_transforms, forcecpu=True, use_hd=True)
else:
train_loader = iterator(datasets['train'][0], datasets['train'][1], transforms = train_transforms, forcecpu=True, use_hd = use_hd)
train_clean = iterator(datasets["train"][0], datasets["train"][1], transforms = all_transforms, forcecpu = True, shuffle = False, use_hd = use_hd)
val_loader = iterator(datasets["val"][0], datasets["val"][1], transforms = all_transforms, forcecpu = True, shuffle = False, use_hd = use_hd)
test_loader = iterator(datasets["test"][0], datasets["test"][1], transforms = all_transforms, forcecpu = True, shuffle = False, use_hd = use_hd)
return (train_loader, train_clean, val_loader, test_loader), [3,image_size, image_size], (64, 16, 20, 600), True, False
def miniImageNet(use_hd = True):
datasets = {}
classes = []
total = 60000
count = 0
for subset in ["train", "validation", "test"]:
data = []
target = []
with open(args.dataset_path + "miniimagenetimages/" + subset + ".csv", "r") as f:
start = 0
for line in f:
if start == 0:
start += 1
else:
splits = line.split(",")
fn, c = splits[0], splits[1]
if c not in classes:
classes.append(c)
count += 1
target.append(len(classes) - 1)
path = args.dataset_path + "miniimagenetimages/" + "images/" + fn
if not use_hd:
image = transforms.ToTensor()(np.array(Image.open(path).convert('RGB')))
data.append(image)
else:
data.append(path)
datasets[subset] = [data, torch.LongTensor(target)]
print()
norm = transforms.Normalize(np.array([x / 255.0 for x in [125.3, 123.0, 113.9]]), np.array([x / 255.0 for x in [63.0, 62.1, 66.7]]))
train_transforms = torch.nn.Sequential(transforms.RandomResizedCrop(84), transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4), transforms.RandomHorizontalFlip(), norm)
all_transforms = torch.nn.Sequential(transforms.Resize(92), transforms.CenterCrop(84), norm) if args.sample_aug == 1 else torch.nn.Sequential(transforms.RandomResizedCrop(84), norm)
if args.episodic:
train_loader = episodic_iterator(datasets["train"][0], 64, transforms = train_transforms, forcecpu = True, use_hd = True)
else:
train_loader = iterator(datasets["train"][0], datasets["train"][1], transforms = train_transforms, forcecpu = True, use_hd = use_hd)
train_clean = iterator(datasets["train"][0], datasets["train"][1], transforms = all_transforms, forcecpu = True, shuffle = False, use_hd = use_hd)
val_loader = iterator(datasets["validation"][0], datasets["validation"][1], transforms = all_transforms, forcecpu = True, shuffle = False, use_hd = use_hd)
test_loader = iterator(datasets["test"][0], datasets["test"][1], transforms = all_transforms, forcecpu = True, shuffle = False, use_hd = use_hd)
return (train_loader, train_clean, val_loader, test_loader), [3, 84, 84], (64, 16, 20, 600), True, False
class myImagenetDataset(datasets.ImageNet):
"""
Custom imageNet dataset class in case we want to modify it
"""
def __init__(self, root, split, **kwargs):
super().__init__(root, split, **kwargs)
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (sample, target) where target is class_index of the target class.
"""
path, target = self.samples[index]
sample = self.loader(path)
if self.transform is not None:
sample = self.transform(sample)
if self.target_transform is not None:
target = self.target_transform(target)
return sample, target
def imageNet(use_hd=True):
"""
Loads the ImageNet dataset
"""
norm = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_transforms = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
norm])
all_transforms = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
norm,
])
train_clean_transforms = all_transforms if args.sample_aug==1 else transforms.Compose([transforms.RandomResizedCrop(224), transforms.ToTensor(), norm])
train_dataset = myImagenetDataset(os.path.join(args.dataset_path,'imagenet'), split='train', transform=train_transforms)
train_clean_dataset = myImagenetDataset(os.path.join(args.dataset_path,'imagenet'), split='train', transform=train_clean_transforms)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True,num_workers= min(8, os.cpu_count()), pin_memory=True)
train_clean_loader = torch.utils.data.DataLoader(
train_clean_dataset, batch_size=args.batch_size, shuffle=False,num_workers= min(8, os.cpu_count()), pin_memory=True)
test_dataset = myImagenetDataset(os.path.join(args.dataset_path,'imagenet'), split='val', transform=all_transforms)
test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=args.batch_size, shuffle=False,num_workers= min(8, os.cpu_count()), pin_memory=True)
return (train_loader, test_loader, test_loader), [3, 224, 224], 1000, False, True
def tieredImageNet(use_hd=True):
"""
tiredImagenet dataset
Number of classes :
- train: 351
- val : 97
- novel: 160
Number of samples per class: at most 1300
Total number of images: 790400
Images size : 84x84
"""
datasets = {}
total = 790400
num_elements = {}
buffer = {'train':0, 'val':351, 'test':351+97}
for subset in ['train', 'val', 'test']:
data = []
target = []
num_elements[subset]=[]
if subset=='train':
data_train = []
target_train = []
subset_path = os.path.join(args.dataset_path, 'tieredimagenet', subset)
classe_files = os.listdir(subset_path)
for c, classe in enumerate(classe_files):
files = os.listdir(os.path.join(subset_path, classe))
count = 0
for file in files:
count += 1
target.append(c+buffer[subset])
if subset=='train':
target_train.append(c)
path = os.path.join(subset_path, classe, file)
if not use_hd:
image = transforms.ToTensor()(np.array(Image.open(path).convert('RGB')))
data.append(image)
if subset=='train':
data_train.append(image)
else:
data.append(path)
if subset=='train':
data_train.append(path)
num_elements[subset].append(count)
if count<1300:
for i in range(1300-count):
target.append(c+buffer[subset])
if not use_hd: # add the same element
image = transforms.ToTensor()(np.array(Image.open(path).convert('RGB')))
data.append(image)
else:
data.append(path)
datasets[subset] = [data, torch.LongTensor(target)]
datasets['train_base']=[data_train, torch.LongTensor(target_train)] # clean train without duplicates
assert (len(datasets['train'][0])+len(datasets['val'][0])+len(datasets['test'][0])==total), 'Total number of sample per class is not 1300'
print()
norm = transforms.Normalize(np.array([x / 255.0 for x in [125.3, 123.0, 113.9]]), np.array([x / 255.0 for x in [63.0, 62.1, 66.7]]))
train_transforms = torch.nn.Sequential(transforms.RandomResizedCrop(84), transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4), transforms.RandomHorizontalFlip(), norm)
all_transforms = torch.nn.Sequential(transforms.Resize(92), transforms.CenterCrop(84), norm) if args.sample_aug == 1 else torch.nn.Sequential(transforms.RandomResizedCrop(84), norm)
if args.episodic:
train_loader = episodic_iterator(datasets["train_base"][0], 351, transforms = train_transforms, forcecpu = True, use_hd = True)
else:
train_loader = iterator(datasets["train_base"][0], datasets["train_base"][1], transforms = train_transforms, forcecpu = True, use_hd = use_hd)
train_clean = iterator(datasets["train"][0], datasets["train"][1], transforms = all_transforms, forcecpu = True, shuffle = False, use_hd = use_hd)
val_loader = iterator(datasets["val"][0], datasets["val"][1], transforms = all_transforms, forcecpu = True, shuffle = False, use_hd = use_hd)
test_loader = iterator(datasets["test"][0], datasets["test"][1], transforms = all_transforms, forcecpu = True, shuffle = False, use_hd = use_hd)
return (train_loader, train_clean, val_loader, test_loader), [3, 84, 84], (351, 97, 160, (num_elements['train'], num_elements['val'], num_elements['test'])), True, False
def fc100(use_hd=True):
"""
fc100 dataset
Number of classes :
- train: 60
- val : 20
- novel: 20
Number of samples per class: exactly 600
Total number of images: 60000
Images size : 84x84
"""
datasets = {}
total = 60000
buffer = {'train':0, 'val':60, 'test':60+20}
for subset in ['train', 'val', 'test']:
data = []
target = []
subset_path = os.path.join(args.dataset_path, 'FC100', subset)
classe_files = os.listdir(subset_path)
for c, classe in enumerate(classe_files):
files = os.listdir(os.path.join(subset_path, classe))
for file in files:
target.append(c+buffer[subset])
path = os.path.join(subset_path, classe, file)
if not use_hd:
image = transforms.ToTensor()(np.array(Image.open(path).convert('RGB')))
data.append(image)
else:
data.append(path)
datasets[subset] = [data, torch.LongTensor(target)]
assert (len(datasets['train'][0])+len(datasets['val'][0])+len(datasets['test'][0])==total), 'Total number of sample per class is not 1300'
print()
image_size = 84
norm = transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
train_transforms = torch.nn.Sequential(transforms.RandomResizedCrop(image_size),
transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),
transforms.RandomHorizontalFlip(),
norm)
all_transforms = torch.nn.Sequential(transforms.Resize(92),
transforms.CenterCrop(image_size),
norm) if args.sample_aug == 1 else torch.nn.Sequential(transforms.RandomResizedCrop(image_size, scale=(0.14,1)), norm)
if args.episodic:
train_loader = episodic_iterator(datasets["train"][0], 60, transforms = train_transforms, forcecpu = True, use_hd = True)
else:
train_loader = iterator(datasets["train"][0], datasets["train"][1], transforms = train_transforms, forcecpu = True, use_hd = use_hd)
train_clean = iterator(datasets["train"][0], datasets["train"][1], transforms = all_transforms, forcecpu = True, shuffle = False, use_hd = use_hd)
val_loader = iterator(datasets["val"][0], datasets["val"][1], transforms = all_transforms, forcecpu = True, shuffle = False, use_hd = use_hd)
test_loader = iterator(datasets["test"][0], datasets["test"][1], transforms = all_transforms, forcecpu = True, shuffle = False, use_hd = use_hd)
return (train_loader, train_clean, val_loader, test_loader), [3, 84, 84], (60, 20, 20, 600), True, False
def CUBfs(use_hd=True):
datasets = {}
num_elements = {}
folders_path = os.path.join(args.dataset_path, 'CUB_200_2011')
images_path = os.path.join(folders_path, 'CUB_200_2011', 'images')
list_files = os.listdir(images_path)
list_files.sort()
num_elements = {}
buffer = {'train':0, 'val':100, 'test':150}
class_names = {}
for subset in ['train', 'val', 'test']:
data = []
target = []
num_elements[subset]=[]
if subset=='train':
data_train = []
target_train = []
csv_path = os.path.join(folders_path, 'split', f'{subset}.csv')
class_names[subset] = []
with open(csv_path, "r") as f:
start = 0
for line in f:
if start == 0:
start += 1
else:
splits = line.split(",")
fn, c = splits[0], splits[1]
fn2 = ''.join([i for i in fn if not i.isdigit()])
fn2 = fn2.replace('.', '').replace('_', '').replace('jpg', '').lower()
if fn2 not in class_names[subset]:
class_names[subset].append(fn2)
files = [fn for fn in list_files if (''.join([i for i in fn if not i.isdigit()])).replace('.', '').replace('_', '').replace('jpg', '').lower() in class_names[subset]]
for c, folder in enumerate(files):
count = 0
images = os.listdir(os.path.join(images_path, folder))
for file in images:
count+=1
target.append(c+buffer[subset])
if subset == 'train':
target_train.append(c+buffer[subset])
path = os.path.join(images_path, folder, file)
if not use_hd:
image = transforms.ToTensor()(np.array(Image.open(path).convert('RGB')))
data.append(image)
if subset == 'train':
data_train.append(image)
else:
data.append(path)
if subset == 'train':
data_train.append(path)
num_elements[subset].append(count)
if count<60:
for i in range(60-count):
target.append(c+buffer[subset])
if not use_hd: # add the same element
data.append(image)
else:
data.append(path)
datasets[subset] = [data, torch.LongTensor(target)]
if subset == 'train':
datasets['train_base'] = [data_train, torch.LongTensor(target_train)] # clean train without duplicates
image_size = 84
norm = transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
train_transforms = torch.nn.Sequential(transforms.RandomResizedCrop(image_size),
transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),
transforms.RandomHorizontalFlip(),
norm)
all_transforms = torch.nn.Sequential(transforms.Resize([int(1.15*image_size), int(1.15*image_size)]),
transforms.CenterCrop(image_size),
norm) if args.sample_aug == 1 else torch.nn.Sequential(transforms.RandomResizedCrop(image_size, scale=(0.14,1)), norm)
if args.episodic:
train_loader = episodic_iterator(datasets['train_base'][0], 100, transforms = train_transforms, forcecpu = True, use_hd = use_hd)
else:
train_loader = iterator(datasets['train_base'][0], datasets['train_base'][1], transforms = train_transforms, forcecpu = True, use_hd=use_hd)
train_clean = iterator(datasets['train'][0], datasets['train'][1], transforms = all_transforms, forcecpu = True, shuffle = False, use_hd=use_hd)
val_loader = iterator(datasets['val'][0], datasets['val'][1], transforms = all_transforms, forcecpu = True, shuffle = False, use_hd=use_hd)
test_loader = iterator(datasets['test'][0], datasets['test'][1], transforms = all_transforms, forcecpu = True, shuffle = False, use_hd=use_hd)
return (train_loader, train_clean, val_loader, test_loader), [3, image_size, image_size], (100, 50, 50, (num_elements['train'], num_elements['val'], num_elements['test'])), True, False
def omniglotfs():
base = torch.load(args.dataset_path + "omniglot/base.pt")
base_data = base.reshape(-1, base.shape[2], base.shape[3], base.shape[4]).float()
base_targets = torch.arange(base.shape[0]).unsqueeze(1).repeat(1, base.shape[1]).reshape(-1)
val = torch.load(args.dataset_path + "omniglot/val.pt")
val_data = val.reshape(-1, val.shape[2], val.shape[3], val.shape[4]).float()
val_targets = torch.arange(val.shape[0]).unsqueeze(1).repeat(1, val.shape[1]).reshape(-1)
novel = torch.load(args.dataset_path + "omniglot/novel.pt")
novel_data = novel.reshape(-1, novel.shape[2], novel.shape[3], novel.shape[4]).float()
novel_targets = torch.arange(novel.shape[0]).unsqueeze(1).repeat(1, novel.shape[1]).reshape(-1)
train_transforms = torch.nn.Sequential(transforms.RandomCrop(100, padding = 4), transforms.Normalize((0.0782) ,(0.2685)))
all_transforms = torch.nn.Sequential(transforms.CenterCrop(100), transforms.Normalize((0.0782), (0.2685))) if args.sample_aug == 1 else torch.nn.Sequential(transforms.RandomCrop(100, padding = 4), transforms.Normalize((0.0782) ,(0.2685)))
if args.episodic:
train_loader = episodic_iterator(base_data, base.shape[0], transforms = train_transforms)
else:
train_loader = iterator(base_data, base_targets, transforms = train_transforms)
train_clean = iterator(base_data, base_targets, transforms = all_transforms, shuffle = False)
val_loader = iterator(val_data, val_targets, transforms = all_transforms, shuffle = False)
test_loader = iterator(novel_data, novel_targets, transforms = all_transforms, shuffle = False)
return (train_loader, train_clean, val_loader, test_loader), [1, 100, 100], (base.shape[0], val.shape[0], novel.shape[0], novel.shape[1]), True, False
def miniImageNet84():
with open(args.dataset_path + "miniimagenet/train.pkl", 'rb') as f:
train_file = pickle.load(f)
train, train_targets = [transforms.ToTensor()(x) for x in train_file["data"]], train_file["labels"]
with open(args.dataset_path + "miniimagenet/test.pkl", 'rb') as f:
test_file = pickle.load(f)
test, test_targets = [transforms.ToTensor()(x) for x in test_file["data"]], test_file["labels"]
with open(args.dataset_path + "miniimagenet/validation.pkl", 'rb') as f:
validation_file = pickle.load(f)
validation, validation_targets = [transforms.ToTensor()(x) for x in validation_file["data"]], validation_file["labels"]
norm = transforms.Normalize(np.array([x / 255.0 for x in [125.3, 123.0, 113.9]]), np.array([x / 255.0 for x in [63.0, 62.1, 66.7]]))
train_transforms = torch.nn.Sequential(transforms.RandomResizedCrop(84), transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4), transforms.RandomHorizontalFlip(), norm)
all_transforms = torch.nn.Sequential(transforms.Resize(92), transforms.CenterCrop(84), norm) if args.sample_aug == 1 else torch.nn.Sequential(transforms.RandomResizedCrop(84), norm)
if args.episodic:
train_loader = episodic_iterator(train, 64, transforms = train_transforms, forcecpu = True)
else:
train_loader = iterator(train, train_targets, transforms = train_transforms, forcecpu = True)
train_clean = iterator(train, train_targets, transforms = all_transforms, forcecpu = True, shuffle = False)
val_loader = iterator(validation, validation_targets, transforms = all_transforms, forcecpu = True, shuffle = False)
test_loader = iterator(test, test_targets, transforms = all_transforms, forcecpu = True, shuffle = False)
return (train_loader, train_clean, val_loader, test_loader), [3, 84, 84], (64, 16, 20, 600), True, False
def get_dataset(dataset_name):
if dataset_name.lower() == "cifar10":
return cifar10(data_augmentation = True)
elif dataset_name.lower() == "cifar100":
return cifar100(data_augmentation = True)
elif dataset_name.lower() == "cifarfs":
return cifarfs(data_augmentation = True)
elif dataset_name.lower() == "mnist":
return mnist()
elif dataset_name.lower() == "fashion":
return fashion_mnist()
elif dataset_name.lower() == "miniimagenet":
return miniImageNet()
elif dataset_name.lower() == "imagenet":
return imageNet()
elif dataset_name.lower() == "miniimagenet84":
return miniImageNet84()
elif dataset_name.lower() == "cubfs":
return CUBfs()
elif dataset_name.lower() == "omniglotfs":
return omniglotfs()
elif dataset_name.lower() == "tieredimagenet":
return tieredImageNet()
elif dataset_name.lower() == "fc100":
return fc100()
else:
print("Unknown dataset!")
print("datasets, ", end='')