-
Notifications
You must be signed in to change notification settings - Fork 0
/
tf_run.py
120 lines (89 loc) · 3.6 KB
/
tf_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# Import before TF to disable TF outputs
from tintml import Tint
import os
# Import TF related stuff
import tensorflow as tf
#tf.get_logger().setLevel('ERROR')
# Can also be set using the AUTOGRAPH_VERBOSITY environment variable
#tf.autograph.set_verbosity(3)
from tensorflow.keras.layers import Dense, Flatten, Conv2D
from tensorflow.keras import Model
tint = Tint()
tint.printh('Preparing Data')
with tint.status('Processing'):
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# Add a channels dimension
x_train = x_train[..., tf.newaxis].astype("float32")
x_test = x_test[..., tf.newaxis].astype("float32")
train_ds = tf.data.Dataset.from_tensor_slices(
(x_train, y_train)).shuffle(10000).batch(32)
test_ds = tf.data.Dataset.from_tensor_slices(
(x_test, y_test)).batch(32)
tint.log('Successfully loaded data')
tint.printh('Model Setup')
class MyModel(Model):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = Conv2D(12, 3, activation='relu')
self.flatten = Flatten()
self.d1 = Dense(40, activation='relu')
self.d2 = Dense(10)
def call(self, x):
x = self.conv1(x)
x = self.flatten(x)
x = self.d1(x)
return self.d2(x)
with tint.status('Initialization'):
# Create an instance of the model
model = MyModel()
tint.log('Model initialized')
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
tint.log('Log function initialized')
optimizer = tf.keras.optimizers.Adam()
tint.log('Optimizer initialized')
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
tint.log('Metrics initialized')
@tf.function
def train_step(images, labels):
with tf.GradientTape() as tape:
# training=True is only needed if there are layers with different
# behavior during training versus inference (e.g. Dropout).
predictions = model(images, training=True)
loss = loss_object(labels, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
train_loss(loss)
train_accuracy(labels, predictions)
@tf.function
def test_step(images, labels):
# training=False is only needed if there are layers with different
# behavior during training versus inference (e.g. Dropout).
predictions = model(images, training=False)
t_loss = loss_object(labels, predictions)
test_loss(t_loss)
test_accuracy(labels, predictions)
tint.printh('Training')
EPOCHS = 5
for epoch in range(EPOCHS):
tint.print("Epoch {}/{}".format(epoch+1, EPOCHS))
# Reset the metrics at the start of the next epoch
train_loss.reset_states()
train_accuracy.reset_states()
test_loss.reset_states()
test_accuracy.reset_states()
for images, labels in tint.iter(train_ds, "Training"):
train_step(images, labels)
for test_images, test_labels in tint.iter(test_ds, "Testing"):
test_step(test_images, test_labels)
tint.print_metrics({
'Train Loss': train_loss.result(),
'Train Accuracy': train_accuracy.result(),
'Test Loss': test_loss.result(),
'Test Accuracy': test_accuracy.result()},
down_is_better=[True, False, True, False],
)