-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
executable file
·342 lines (260 loc) · 15.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
#!/usr/bin/python3
import config
import numpy as np
import pandas as pd
import torch
import torchvision.transforms as IT
import torchvideo.transforms as VT
from torchvision.transforms import Compose
import torch.optim as optim
from models import VDAN_PLUS
from utils import AverageMeter, computeMRR, load_embeddings_matrix, load_checkpoint, save_checkpoint, init_weights
from data_loaders.vatex_dataloader import VaTeXDataLoader
from torch.utils.tensorboard import SummaryWriter
from datetime import datetime
import time
import multiprocessing
import random
import os
import warnings
warnings.filterwarnings("ignore")
WORKERS = int(multiprocessing.cpu_count()) # number of workers for loading data in the DataLoader
PRINT_FREQ = 100 # print training or validation status every __ batches
IMAGENET_MEAN = [0.485, 0.456, 0.406]
IMAGENET_STD = [0.229, 0.224, 0.225]
KINECTS400_MEAN = [0.43216, 0.394666, 0.37645]
KINECTS400_STD = [0.22803, 0.22145, 0.216989]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# cudnn.benchmark = True # set to true only if inputs to model are fixed size; otherwise lot of computational overhead
random.seed(123)
np.random.seed(123)
torch.manual_seed(123)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def create_sets(word_map, train_params, model_params):
if train_params['do_random_horizontal_flip']:
train_transform = Compose([
VT.NDArrayToPILVideo(),
VT.ResizeVideo(train_params['resize_size']),
VT.RandomCropVideo(train_params['random_crop_size']),
VT.RandomHorizontalFlipVideo(p=0.5),
VT.PILVideoToTensor(),
VT.NormalizeVideo(mean=KINECTS400_MEAN, std=KINECTS400_STD)
])
else:
train_transform = Compose([
VT.NDArrayToPILVideo(),
VT.ResizeVideo(train_params['resize_size']),
VT.CenterCropVideo(train_params['random_crop_size']),
VT.RandomHorizontalFlipVideo(p=0.5),
VT.PILVideoToTensor(),
VT.NormalizeVideo(mean=KINECTS400_MEAN, std=KINECTS400_STD)
])
val_transform = Compose([
VT.NDArrayToPILVideo(),
VT.ResizeVideo(train_params['resize_size']),
VT.CenterCropVideo(train_params['random_crop_size']),
VT.PILVideoToTensor(),
VT.NormalizeVideo(mean=KINECTS400_MEAN, std=KINECTS400_STD)
])
# Data location and settings
training_data = VaTeXDataLoader(root=train_params['train_data_path'],
annFile=train_params['captions_train_fname'],
word_map=word_map,
vid_transform=train_transform,
annotations_transform=IT.ToTensor(),
num_sentences=train_params['max_sents'],
max_words=train_params['max_words'],
dataset_proportion=train_params['train_data_proportion'],
training_data=True,
num_input_frames=model_params['num_input_frames'])
validation_data = VaTeXDataLoader(root=train_params['val_data_path'],
annFile=train_params['captions_val_fname'],
word_map=word_map,
vid_transform=val_transform,
annotations_transform=IT.ToTensor(),
num_sentences=train_params['max_sents'],
max_words=train_params['max_words'],
dataset_proportion=train_params['val_data_proportion'],
training_data=False,
num_input_frames=model_params['num_input_frames'])
# Data loaders
training_dataloader = torch.utils.data.DataLoader(training_data,
batch_size=train_params['train_batch_size'],
num_workers=WORKERS,
worker_init_fn=np.random.seed(123),
shuffle=True)
validation_dataloader = torch.utils.data.DataLoader(validation_data,
batch_size=train_params['val_batch_size'],
num_workers=WORKERS,
worker_init_fn=np.random.seed(123),
shuffle=False)
return training_dataloader, validation_dataloader, training_data, validation_data
def train(training_dataloader, training_data, model, criterion, optimizer, epoch, writer):
model.train() # training mode enables dropout
batch_time = AverageMeter() # forward prop. + back prop. time per batch
data_time = AverageMeter() # data loading time per batch
losses = AverageMeter() # cross entropy loss
start = time.time()
num_batches = len(training_dataloader)
for i, (vids_paths, captions_docs, vids, documents, sentences_per_document, words_per_sentence, labels) in enumerate(training_dataloader):
data_time.update(time.time() - start)
vids = vids.to(device)
documents = documents.squeeze(1).to(device) # (batch_size, sentence_limit, word_limit)
sentences_per_document = sentences_per_document.to(device) # (batch_size)
words_per_sentence = words_per_sentence.to(device) # (batch_size, sentence_limit)
labels = labels.squeeze(1).to(device) # (batch_size)
# Forward prop.
vids_embeddings, texts_embeddings, word_alphas, sentence_alphas, _ = model(vids, documents, sentences_per_document, words_per_sentence)
# Loss
L_enc = criterion(vids_embeddings, texts_embeddings, labels) ## Apply Eq. 1 from the paper: Cosine Embedding Loss
# Back prop.
optimizer.zero_grad()
L_enc.backward()
# Update
optimizer.step()
# Keep track of metrics
losses.update(L_enc.item(), labels.size(0))
batch_time.update(time.time() - start)
start = time.time()
# Print training status
if i % PRINT_FREQ == 0 or i == num_batches-1:
print('[{0}] Epoch: [{1}][{2}/{3}]\t'
'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data Load Time {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
epoch+1, i, num_batches,
batch_time=batch_time,
data_time=data_time,
loss=losses))
writer.add_scalar('Batch_Loss/train', losses.val, epoch*num_batches + i)
writer.add_scalar('Epoch_Loss/train', losses.avg, epoch)
return losses.avg
def validate(validation_dataloader, validation_data, model, criterion, epoch, writer):
model.eval() # training mode enables dropout
# UNCOMMENT TO PERFORM VALIDATION
val_batch_time = AverageMeter() # forward prop. + back prop. time per batch
val_data_time = AverageMeter() # data loading time per batch
val_losses = AverageMeter() # cross entropy loss
val_start = time.time()
num_batches = len(validation_dataloader)
val_dots = np.ndarray((len(validation_data),), dtype=np.float32)
positive_embeddings = []
for i, (vids_paths, captions_docs, vids, documents, sentences_per_document, words_per_sentence, labels) in enumerate(validation_dataloader):
val_data_time.update(time.time() - val_start)
vids = vids.to(device)
documents = documents.squeeze(1).to(device) # (batch_size, sentence_limit, word_limit)
sentences_per_document = sentences_per_document.to(device) # (batch_size)
words_per_sentence = words_per_sentence.to(device) # (batch_size, sentence_limit)
labels = labels.squeeze(1).to(device) # (batch_size)
# Forward prop.
vids_embeddings, texts_embeddings, word_alphas, sentence_alphas, _ = model(vids, documents, sentences_per_document, words_per_sentence)
# Loss
loss = criterion(vids_embeddings, texts_embeddings, labels) # scalar
vids_embeddings = vids_embeddings.detach().cpu()
texts_embeddings = texts_embeddings.detach().cpu()
val_dots[i * train_params['val_batch_size']: (i + 1) * train_params['val_batch_size']] = np.dot(vids_embeddings, texts_embeddings.T).diagonal() / (np.linalg.norm(vids_embeddings, axis=1) * np.linalg.norm(texts_embeddings, axis=1))
# Keep track of metrics
val_losses.update(loss.item(), labels.size(0))
val_batch_time.update(time.time() - val_start)
val_start = time.time()
# Print training status
if i % PRINT_FREQ == 0:
print('\tEpoch: [{0}][{1}/{2}]\t'
'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data Load Time {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})'.format(epoch+1, i, len(validation_dataloader),
batch_time=val_batch_time,
data_time=val_data_time,
loss=val_losses))
positive_embeddings.extend(torch.stack([vids_embeddings[labels > 0], texts_embeddings[labels > 0]], dim=1))
positive_embeddings = torch.stack(positive_embeddings, dim=0)
val_MRR = np.mean(computeMRR(positive_embeddings[:, 0], positive_embeddings[:, 1]))
writer.add_scalar('Epoch_Loss/val', val_losses.avg, epoch)
writer.add_scalar('Epoch_MRR/val', val_MRR, epoch)
writer.add_histogram('Val_Dots_Distribution', val_dots, epoch)
print('\tEpoch: [{0}][{1}/{2}]\t'
'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data Load Time {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\n\t'
'Validation MRR: {3}'.format(epoch + 1, num_batches - 1,
len(validation_dataloader), val_MRR,
batch_time=val_batch_time,
data_time=val_data_time,
loss=val_losses))
return val_losses.avg, val_MRR
def main(model_params, train_params):
os.makedirs(train_params['log_folder'], exist_ok=True)
if train_params['model_checkpoint_filename']:
print('[{}] Loading saved model weights to finetune (or continue training): {}...'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S'), train_params['model_checkpoint_filename']))
_, model, optimizer_state_dict, word_map, model_params, train_params = load_checkpoint(train_params['model_checkpoint_filename'])
datetimestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
writer = SummaryWriter(log_dir='{}/{}_{}_lr{}_{}eps_ft/'.format(train_params['log_folder'], datetimestamp, train_params['hostname'], train_params['learning_rate'], train_params['num_epochs']), filename_suffix='_{}'.format(datetimestamp))
else:
embeddings, word_map = load_embeddings_matrix(train_params['embeddings_filename'], model_params['word_embed_size'], train_params['use_random_word_embeddings'])
vocab_size = len(word_map)
model = VDAN_PLUS(vocab_size=vocab_size,
doc_emb_size=model_params['doc_embed_size'],
sent_emb_size=model_params['sent_embed_size'],
word_emb_size=model_params['word_embed_size'],
hidden_feat_emb_size=model_params['hidden_feat_size'],
final_feat_emb_size=model_params['feat_embed_size'],
sent_rnn_layers=model_params['sent_rnn_layers'],
word_rnn_layers=model_params['word_rnn_layers'],
sent_att_size=model_params['sent_att_size'],
word_att_size=model_params['word_att_size'],
use_visual_shortcut=model_params['use_visual_shortcut'],
learn_first_hidden_vector=model_params['learn_first_hidden_vector'],
use_sentence_level_attention=model_params['use_sentence_level_attention'],
use_word_level_attention=model_params['use_word_level_attention'])
# Init word embeddings layer with pretrained embeddings
model.text_embedder.doc_embedder.sent_embedder.init_pretrained_embeddings(embeddings)
model.vid_embedder.fine_tune(False)
model.apply(init_weights)
datetimestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
writer = SummaryWriter(log_dir='{}/{}_{}_lr{}_{}eps/'.format(train_params['log_folder'], datetimestamp, train_params['hostname'], train_params['learning_rate'], train_params['num_epochs']), filename_suffix='_{}'.format(datetimestamp))
training_dataloader, validation_dataloader, training_data, validation_data = create_sets(word_map, train_params, model_params)
if train_params['optimizer'] == 'Adam':
optimizer = optim.Adam(params=filter(lambda p: p.requires_grad, model.parameters()), lr=train_params['learning_rate'])
elif train_params['optimizer'] == 'SGD':
optimizer = optim.SGD(params=filter(lambda p: p.requires_grad, model.parameters()), lr=train_params['learning_rate'])
else:
print(f'Optmizer not implemented: {train_params["optimizer"]}')
# Loss functions
criterion = train_params['criterion']
# Move to device
model = model.to(device)
criterion = criterion.to(device)
print(model)
# Epochs
curr_val_loss = float('inf')
# curr_max_MRR = -float('inf')
for epoch in range(0, train_params['num_epochs']):
# One epoch's training
train_loss = train(training_dataloader=training_dataloader,
training_data=training_data,
model=model,
criterion=criterion,
optimizer=optimizer,
epoch=epoch,
writer=writer)
val_loss, MRR = validate(validation_dataloader=validation_dataloader,
validation_data=validation_data,
model=model,
criterion=criterion,
epoch=epoch,
writer=writer)
if val_loss < curr_val_loss or epoch == 0:
# Save checkpoint
save_checkpoint(epoch+1, model, optimizer, word_map, datetimestamp, model_params, train_params)
curr_val_loss = val_loss
if __name__ == '__main__':
model_params = config.model_params
train_params = config.train_params
print('\nModel Params:\n', model_params)
print('\nTrain Params:\n', train_params)
print('\n')
main(model_params, train_params)
print('\nModel Params:\n', model_params)
print('\nTrain Params:\n', train_params)
print('\n')