-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathdataset.py
218 lines (169 loc) · 7.97 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import json
import os
import os.path as osp
import pickle
from collections import Counter
import numpy as np
import torch
import torch.utils.data as data
from PIL import Image
from utils import text
from utils.image import coco_name_format
def collate_fn(batch):
"""Sort batch (list) on question lengths for use in RNN pack_padded_sequence later."""
batch.sort(key=lambda x: x['question_len'], reverse=True)
return data.dataloader.default_collate(batch)
def get_dataloader(annotations, questions, images, args,
split="train", maps=None, vocab=None,
raw_images=False, transforms=None, shuffle=True):
return data.DataLoader(VQADataset(annotations, questions, images, split, args,
raw_images=raw_images, vocab=vocab,
transforms=transforms, maps=maps),
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=shuffle,
collate_fn=collate_fn)
class VQADataset(data.Dataset):
def __init__(self, annotations, questions, images_dataset, split, args,
raw_images=False, transforms=None,
vocab=None, normalize_img=True, maps=None, year=2014):
# the data is saved as a dict where the key is the image_id
# and the value is the VGG feature vector
if not raw_images:
self.images_dataset = torch.load(images_dataset)
print("Loaded {0} image embeddings dataset".format(split))
self.split = split
self.year = year
self._process_dataset(annotations, questions, args, split, maps=maps)
if vocab:
self.vocab = vocab
self.embed_question = args.embed_question
self.raw_images = raw_images
self.normalize_img = normalize_img
self.transforms = transforms
self.root = args.image_root
def _process_dataset(self, annotations, questions, args, split="train", maps=None):
"""
Process the dataset and load it up.
We should only do this for the training set.
"""
self.data, self.vocab, self.word_to_wid, self.wid_to_word, \
self.ans_to_aid, self.aid_to_ans = \
process_vqa_dataset(questions, annotations, split,
maps, args.top_answer_limit, args.max_length)
def __len__(self):
return len(self.data)
def __getitem__(self, index):
d = self.data[index]
item = dict()
if self.raw_images:
item["image_id"] = d["image_id"]
img = Image.open(osp.join(osp.expanduser(self.root),
"{0}{1}".format(self.split, self.year),
d["image_name"]))
img = img.convert(mode='RGB')
if self.transforms is not None:
img = self.transforms(img)
else:
# Process Visual (image or features)
# the preprocess script should have already saved these as Torch tensors
item["image_id"] = d["image_id"]
img = self.images_dataset[d["image_id"]].squeeze()
item['image'] = img
# Process Question (word token)
item['question_id'] = d['question_id']
item['question_wids'] = d['question_wids'].astype(np.int64)
# if self.embed_question:
# item['question'] = torch.from_numpy(d['question_wids'])
# else:
# # one_hot_vec = np.zeros((len(d["question_wids"]), len(self.vocab)))
# # for k in range(len(d["question_wids"])):
# # one_hot_vec[k, d['question_wids'][k]] = 1
# # item['question'] = torch.from_numpy(one_hot_vec).float()
#
# one_hot_vec = torch.zeros(
# (len(d["question_wids"]), len(self.vocab)))
# one_hot_vec[torch.arange(one_hot_vec.size(0)).long(
# ), d['question_wids'].astype(np.int64)] = 1
# item['question'] = one_hot_vec.float()
item['question'] = torch.from_numpy(d['question_wids']).long()
item['question_len'] = d['question_length']
item['answer_type'] = d['answer_type']
if self.split == "train":
item['answer_id'] = d['answer_id']
return item
def process_vqa_dataset(questions_file, annotations_file, split, maps=None,
top_answer_limit=1000, max_length=26, year=2014):
"""
Process the questions and annotations into a consolidated dataset.
This is done only for the training set.
:param questions_file:
:param annotations_file:
:param split: The dataset split.
:param maps: Dict containing various mappings such as \
word_to_wid, wid_to_word, ans_to_aid and aid_to_ans.
:param top_answer_limit:
:param max_length: The maximum quetsion length. Taken from the VQA sample code.
:param year: COCO Dataset release year.
:return: The processed dataset ready to be used
"""
cache_file = "vqa_{0}_dataset_cache.pickle".format(split)
# Check if preprocessed cache exists. If yes, load it up, else preprocess the data
if os.path.exists(cache_file):
print("Found {0} set cache! Loading...".format(split))
dataset, vocab, word_to_wid, wid_to_word, ans_to_aid, aid_to_ans = pickle.load(
open(cache_file, 'rb'))
else:
# load the annotations and questions files
print("Loading {0} annotations".format(split))
with open(annotations_file) as ann:
j = json.load(ann)
annotations = j["annotations"]
print("Loading {0} questions".format(split))
with open(questions_file) as q:
j = json.load(q)
questions = j["questions"]
# load up the dataset
dataset = []
for idx, q in enumerate(questions):
d = dict()
d["question_id"] = q["question_id"]
d["question"] = q["question"]
d["image_id"] = q["image_id"]
d["image_name"] = coco_name_format(q["image_id"], split, year)
d["answer"] = annotations[idx]["multiple_choice_answer"]
answers = []
for ans in annotations[idx]['answers']:
answers.append(ans['answer'])
d['answers_occurence'] = Counter(answers).most_common()
d["question_type"] = annotations[idx]["question_type"]
d["answer_type"] = annotations[idx]["answer_type"]
dataset.append(d)
if split == "train":
# Get the top N answers so we can filter the dataset
# to only questions with these answers
top_answers = text.get_top_answers(dataset, top_answer_limit)
dataset = text.filter_dataset(dataset, top_answers)
# Process the questions
dataset = text.preprocess_questions(dataset)
vocab = text.get_vocabulary(dataset)
# 0 is used for padding
word_to_wid = {w: i+1 for i, w in enumerate(vocab)}
wid_to_word = {i+1: w for i, w in enumerate(vocab)}
ans_to_aid = {a: i for i, a in enumerate(top_answers)}
aid_to_ans = {i: a for i, a in enumerate(top_answers)}
dataset = text.encode_answers(dataset, ans_to_aid)
else: # split == "val":
# Process the questions
dataset = text.preprocess_questions(dataset)
vocab = maps["vocab"]
word_to_wid = maps["word_to_wid"]
wid_to_word = maps["wid_to_word"]
ans_to_aid = maps["ans_to_aid"]
aid_to_ans = maps["aid_to_ans"]
dataset = text.remove_tail_words(dataset, vocab)
dataset = text.encode_questions(dataset, word_to_wid, max_length)
print("Caching the processed data")
pickle.dump([dataset, vocab, word_to_wid, wid_to_word, ans_to_aid, aid_to_ans],
open(cache_file, 'wb+'))
return dataset, vocab, word_to_wid, wid_to_word, ans_to_aid, aid_to_ans