-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patha3c_trainer.py
804 lines (723 loc) · 35.9 KB
/
a3c_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
import numpy as np
from sklearn.neural_network import MLPClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.neural_network import MLPClassifier
from sklearn.svm import LinearSVC as SVC
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.distributions import Categorical
from utils import *
DATA_DIR = "../data/gaussian/"
class MLPPolicy(nn.Module):
'''
Works when input dimension is low.
'''
def __init__(self, input_dim, hidden_dims, activations=None, output_dim=2):
super(MLPPolicy, self).__init__()
dims = [input_dim] + hidden_dims + [output_dim]
self.linears = []
for i in range(1, len(dims)):
linear = nn.Linear(dims[i - 1], dims[i])
setattr(self, 'linear_{}'.format(i), linear)
self.linears.append(linear)
if activations is not None:
self.activations = activations
else:
self.activations = [nn.Sigmoid() for _ in range(len(dims)-2)] + [nn.Softmax(dim=1)]
def forward(self, x):
x_hat = x
for linear, activation in zip(self.linears, self.activations):
x_hat = activation(linear(x_hat))
return x_hat
class HMLPPolicy(MLPPolicy):
'''
Works when input dimension is high.
'''
def __init__(self, input_dim, input_hidden_dims, union_hidden_dims, output_dim=2):
super(MLPPolicy, self).__init__()
input_dims = [input_dim] + input_hidden_dims
union_dims = [input_hidden_dims[-1]+output_dim] + union_hidden_dims + [output_dim]
self.input_linears = []
for i in range(1, len(input_dims)):
linear = nn.Linear(input_dims[i - 1], input_dims[i])
setattr(self, 'linear_{}'.format(i), linear)
self.input_linears.append(linear)
self.union_linears = []
for i in range(1, len(union_dims)):
linear = nn.Linear(union_dims[i - 1], union_dims[i])
setattr(self, 'linear_{}'.format(i+len(input_dims)), linear)
self.union_linears.append(linear)
self.input_activations = [nn.Sigmoid() for _ in range(len(input_dims) - 1)]
self.union_activations = [nn.Sigmoid() for _ in range(len(union_dims) - 2)] + [nn.Softmax(dim=1)]
def forward(self, x, y):
x_hat = x
for linear, activation in zip(self.input_linears, self.input_activations):
x_hat = activation(linear(x_hat))
x_hat = torch.cat([x_hat, y], dim=1)
for linear, activation in zip(self.union_linears, self.union_activations):
x_hat = activation(linear(x_hat))
return x_hat
class GRUPolicy(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim=2, activations=None):
super(GRUPolicy, self).__init__()
self.hidden_dim = hidden_dim
self.gru = nn.GRU(input_dim, hidden_dim, batch_first=True)
self.linear = nn.Linear(hidden_dim, output_dim)
self.output_dim = output_dim
def forward(self, x):
out, _ = self.gru(x.unsqueeze(0))
out = out.view(out.size()[1], out.size(2))
gru_out = out
out = nn.Softmax(dim=1)(self.linear(out))
return out, gru_out[-1]
class MLPValue(MLPPolicy):
def __init__(self, input_dim, hidden_dims, activations=None, output_dim=1):
super(MLPValue, self).__init__(input_dim, hidden_dims, activations=activations, output_dim=output_dim)
def forward(self, x):
x_hat = x
for linear, activation in zip(self.linears, self.activations[:-1]):
x_hat = activation(linear(x_hat))
x_hat = self.linears[-1](x_hat)
return x_hat
class ImbGaussianTrainer(object):
def __init__(self):
self.env = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5), random_state=1)
def train(self, data_dir='../data/gaussian/', hidden_dims=None, major_ratio=0.05, lr=None):
if hidden_dims is None:
hidden_dims = [5]
train_x, train_y, valid_x, valid_y, test_x, test_y = self.load_data(data_dir)
self.policy = MLPPolicy(input_dim=train_x.shape[1] + train_y.shape[1], hidden_dims=hidden_dims)
self.policy.cuda()
if lr is None:
self.optimizer = optim.RMSprop(self.policy.parameters())
else:
self.optimizer = optim.RMSprop(self.policy.parameters(), lr=lr)
best_valid_reward = 0.
best_test_reward = 0.
i_episode = 10
epoch = 0
x = Variable(torch.cat([torch.from_numpy(train_x).float(), torch.from_numpy(train_y).float()], dim=1)).cuda()
y = np.zeros((len(train_y), 2)).astype('float32')
idx = np.argmax(train_y, axis=1)
y[idx == 0] = [1-major_ratio, major_ratio]
y[idx == 1] = [0., 1.]
y = Variable(torch.from_numpy(y).cuda())
self.initialize_policy(self.policy, x, y)
while True:
weight_probs = self.policy(x)
cross_entropy = - torch.mean(torch.sum(weight_probs * torch.log(weight_probs + 1e-20), dim=1))
self.reg = torch.mean(weight_probs[:, 1]) * 1e-4
print(weight_probs)
log_probs = []
train_rewards = []
valid_rewards = []
test_rewards = []
for i in range(i_episode):
data_weights, log_prob = self.sample_weight(weight_probs)
train_reward, valid_reward, test_reward = self.get_reward(train_x, train_y, data_weights,
valid_x, valid_y, test_x, test_y)
log_probs.append(log_prob)
train_rewards.append(train_reward)
valid_rewards.append(valid_reward)
test_rewards.append(test_reward)
if best_valid_reward < np.mean(valid_rewards):
best_valid_reward = np.mean(valid_rewards)
best_test_reward = np.mean(test_rewards)
self.update_policy(log_probs, train_rewards)
print('Train reward: {} in epoch: {} '.format(np.mean(train_rewards), epoch))
print('Valid reward: {} in epoch: {} '.format(np.mean(valid_rewards), epoch))
print('Test reward: {} in epoch: {} '.format(np.mean(test_rewards), epoch))
print('Best valid F1: {}'.format(best_valid_reward))
print('Best test F1: {}'.format(best_test_reward))
epoch += 1
print('Best valid F1: {}'.format(best_valid_reward))
print('Best test F1: {}'.format(best_test_reward))
def sample_weight(self, probs):
if not isinstance(probs, Variable):
probs = Variable(probs)
m = Categorical(probs)
action = m.sample()
return action.data.cpu().numpy(), m.log_prob(action).mean().cuda()
def get_reward(self, train_x, train_y, train_weights, valid_x, valid_y, test_x, test_y):
'''Train the classifier with supervised
:param train_x:
:param train_y:
:param train_weights:
:param valid_x:
:param valid_y:
:return: The reward (F1)
'''
idx = train_weights == 1
x = train_x[idx]
y = train_y[idx]
self.env.fit(x, y)
preds = self.env.predict(train_x)
_, _, train_reward = evaluate_f1(train_y, preds, pos_label=1)
preds = self.env.predict(valid_x)
_, _, valid_reward = evaluate_f1(valid_y, preds, pos_label=1)
preds = self.env.predict(test_x)
_, _, test_reward = evaluate_f1(test_y, preds, pos_label=1)
return train_reward[1], valid_reward[1], test_reward[1]
def update_policy(self, log_probs, rewards):
rewards = Variable(torch.Tensor(rewards).cuda())
policy_loss = []
rewards = (rewards - rewards.mean()) / (rewards.std() + float(np.finfo(np.float32).eps))
for log_prob, reward in zip(log_probs, rewards):
policy_loss.append(-log_prob * reward)
self.optimizer.zero_grad()
policy_loss = torch.cat(policy_loss).sum()
print('policy loss:{}'.format(policy_loss.data.cpu()))
print('reg:{}'.format(self.reg.data.cpu()))
(policy_loss+self.reg).backward()
self.optimizer.step()
def load_data(self, data_dir):
return load_imb_Gaussian(data_dir)
def initialize_policy(self, policy, x, y, epoch=30):
optimizer = optim.RMSprop(policy.parameters(), lr=0.001)
for e in range(epoch):
probs = policy(x)
print(probs)
loss = -torch.mean(torch.sum(y * torch.log(probs), dim=1))
optimizer.zero_grad()
loss.backward()
optimizer.step()
class HImbGaussianTrainer(ImbGaussianTrainer):
def train(self, data_dir='../data/gaussian/', input_hidden_dims=None, union_hidden_dims=None, major_ratio=0.1, lr=None):
if input_hidden_dims is None:
input_hidden_dims = [2]
if union_hidden_dims is None:
union_hidden_dims = [2]
train_x, train_y, valid_x, valid_y, test_x, test_y = self.load_data(data_dir)
self.policy = HMLPPolicy(train_x.shape[1], input_hidden_dims, union_hidden_dims).cuda()
if lr is None:
self.optimizer = optim.RMSprop(self.policy.parameters())
else:
self.optimizer = optim.RMSprop(self.policy.parameters(), lr=lr)
best_valid_reward = 0.
best_test_reward = 0.
i_episode = 10
epoch = 0
x = Variable(torch.from_numpy(train_x).float().cuda())
y = Variable(torch.from_numpy(train_y).float().cuda())
y_hat = np.zeros((len(train_y), 2)).astype('float32')
idx = np.argmax(train_y, axis=1)
y_hat[idx == 0] = [1 - major_ratio, major_ratio]
y_hat[idx == 1] = [0., 1.]
y_hat = Variable(torch.from_numpy(y_hat).cuda())
self.initialize_policy(self.policy, x, y, y_hat)
while True:
weight_probs = self.policy(x, y)
self.reg = torch.mean(weight_probs[:, 1]) * 0
print(weight_probs)
log_probs = []
train_rewards = []
valid_rewards = []
test_rewards = []
for i in range(i_episode):
data_weights, log_prob = self.sample_weight(weight_probs)
train_reward, valid_reward, test_reward = self.get_reward(train_x, train_y, data_weights,
valid_x, valid_y, test_x, test_y)
log_probs.append(log_prob)
train_rewards.append(train_reward)
valid_rewards.append(valid_reward)
test_rewards.append(test_reward)
if best_valid_reward < np.mean(valid_rewards):
best_valid_reward = np.mean(valid_rewards)
best_test_reward = np.mean(test_rewards)
self.update_policy(log_probs, train_rewards)
print('Train reward: {} in epoch: {} '.format(np.mean(train_rewards), epoch))
print('Valid reward: {} in epoch: {} '.format(np.mean(valid_rewards), epoch))
print('Test reward: {} in epoch: {} '.format(np.mean(test_rewards), epoch))
print('Best valid F1: {}'.format(best_valid_reward))
print('Best test F1: {}'.format(best_test_reward))
epoch += 1
def initialize_policy(self, policy, x, y, y_hat, epoch=50):
optimizer = optim.RMSprop(policy.parameters())
for e in range(epoch):
probs = policy(x, y)
print(probs)
loss = -torch.mean(torch.sum(y_hat * torch.log(probs), dim=1))
optimizer.zero_grad()
loss.backward()
optimizer.step()
class GRUTrainer(ImbGaussianTrainer):
def train(self, data_dir='../data/gaussian/', hidden_dim=50, major_ratio=0.05, lr=None):
train_x, train_y, valid_x, valid_y, test_x, test_y = self.load_data(data_dir)
self.policy = GRUPolicy(input_dim=train_x.shape[1] + train_y.shape[1], hidden_dim=hidden_dim)
self.policy.cuda()
if lr is None:
self.optimizer = optim.RMSprop(self.policy.parameters())
else:
self.optimizer = optim.RMSprop(self.policy.parameters(), lr=lr)
self.value = MLPValue(input_dim=hidden_dim, hidden_dims=[100])
self.value.cuda()
if lr is None:
self.value_optimizer = optim.RMSprop(self.value.parameters())
else:
self.value_optimizer = optim.RMSprop(self.value.parameters(), lr=0.01)
best_valid_reward = 0.
best_test_reward = 0.
best_train_reward = 0.
i_episode = 10
epoch = 0
x = Variable(torch.cat([torch.from_numpy(train_x).float(), torch.from_numpy(train_y).float()], dim=1)).cuda()
y = np.zeros((len(train_y), 2)).astype('float32')
idx = np.argmax(train_y, axis=1)
y[idx == 0] = [1 - major_ratio, major_ratio]
y[idx == 1] = [0.1, 0.9]
y = Variable(torch.from_numpy(y).cuda())
self.initialize_policy(self.policy, x, y)
self.epoch = epoch
while True:
weight_probs, s_T = self.policy(x)
expected_reward = self.value(s_T)
self.reg = torch.mean(weight_probs[:, 1]) ** 2 * 1e-3
print(weight_probs[:5])
log_probs = []
train_rewards = []
valid_rewards = []
test_rewards = []
for i in range(i_episode):
data_weights, log_prob = self.sample_weight(weight_probs)
train_reward, valid_reward, test_reward = self.get_reward(train_x, train_y, data_weights,
valid_x, valid_y, test_x, test_y)
log_probs.append(log_prob)
train_rewards.append(train_reward)
valid_rewards.append(valid_reward)
test_rewards.append(test_reward)
if best_train_reward < np.mean(train_rewards):
best_valid_reward = np.mean(valid_rewards)
best_test_reward = np.mean(test_rewards)
best_train_reward = np.mean(train_rewards)
self.update_policy(log_probs, train_rewards, Variable(expected_reward.data, requires_grad=False))
if self.epoch % 10 == 0:
self.update_value(expected_reward, np.mean(train_rewards))
print('Train reward: {} in epoch: {} '.format(np.mean(train_rewards), self.epoch))
print('Valid reward: {} in epoch: {} '.format(np.mean(valid_rewards), self.epoch))
print('Test reward: {} in epoch: {} '.format(np.mean(test_rewards), self.epoch))
print('Best train reward: {}'.format(best_train_reward))
print('Best valid reward: {}'.format(best_valid_reward))
print('Best test reward: {}'.format(best_test_reward))
self.epoch += 1
def update_value(self, expected_reward, reward):
print(expected_reward)
reward = Variable(torch.Tensor(np.array([reward])).cuda())
self.value_optimizer.zero_grad()
value_loss = (expected_reward-reward)**2
print('value loss:{}'.format(value_loss.data.cpu()))
(value_loss).backward(retain_graph=True)
self.value_optimizer.step()
def update_policy(self, log_probs, rewards, expected_reward):
rewards = Variable(torch.Tensor(rewards).cuda())
rewards -= expected_reward
#if self.epoch > 20:
# rewards -= expected_reward
#else:
# rewards = (rewards - rewards.mean()) / (rewards.std() + float(np.finfo(np.float32).eps))
policy_loss = []
for log_prob, reward in zip(log_probs, rewards):
policy_loss.append(-log_prob * reward)
self.optimizer.zero_grad()
policy_loss = torch.cat(policy_loss).sum()
print('policy loss:{}'.format(policy_loss.data.cpu()))
print('reg:{}'.format(self.reg.data.cpu()))
(policy_loss + self.reg).backward(retain_graph =True)
self.optimizer.step()
def initialize_policy(self, policy, x, y, epoch=30):
optimizer = optim.RMSprop(policy.parameters(), lr=0.001)
for e in range(epoch):
probs, state = policy(x)
print(probs)
loss = -torch.mean(torch.sum(y * torch.log(probs), dim=1))
optimizer.zero_grad()
loss.backward(retain_graph=True)
optimizer.step()
from sklearn import datasets, neighbors
from sklearn.metrics import auc, roc_curve
from sklearn.model_selection import StratifiedKFold
class LFWTrainer(GRUTrainer):
'''Train on real data set (LFW)
'''
def __init__(self, folder):
super(LFWTrainer, self).__init__()
self.folder = folder
self.env = neighbors.KNeighborsClassifier(3)
self.cv = StratifiedKFold(n_splits=3)
def load_data(self, data_dir):
from sklearn.decomposition import PCA, TruncatedSVD
from collections import Counter
data = datasets.fetch_lfw_people()
majority_person = 1871 # 530 photos of George W Bush
minority_person = 531 # 29 photos of Bill Clinton
majority_idxs = np.flatnonzero(data.target == majority_person)
minority_idxs = np.flatnonzero(data.target == minority_person)
idxs = np.hstack((majority_idxs, minority_idxs))
x = data.data[idxs]
y = data.target[idxs]
y[y == majority_person] = 0
y[y == minority_person] = 1
train_x = TruncatedSVD(n_components=100).fit_transform(x)
i = 1
for train, test in self.cv.split(x, y):
if i == self.folder:
break
i += 1
#train_x = TruncatedSVD(n_components=100).fit_transform(x[train])
y = np.eye(2)[y.astype('int32')]
return train_x[train], y[train], x[train], y[train], x[test], y[test]
def get_reward(self, train_x, train_y, train_weights, valid_x, valid_y, test_x, test_y):
from imblearn.metrics import geometric_mean_score
from sklearn.metrics import matthews_corrcoef
idx = train_weights == 1
x = valid_x[idx]
y = valid_y[idx]
self.env.fit(x, np.argmax(y, axis=1).astype('int32'))
preds = self.env.predict_proba(test_x)
if preds.shape[1] == 2:
preds = preds[:, 1]
valid_reward = evaluate_auc_roc(np.argmax(test_y, axis=1).astype('int32'), preds)
return valid_reward, valid_reward, valid_reward
class CreditFraudTrainer(GRUTrainer):
''' 0.759 (785)
Compared with: 0.70
'''
def __init__(self):
super(CreditFraudTrainer, self).__init__()
self.env = LogisticRegression(random_state=0, C=1e0)
#self.env = MLPClassifier(solver='lbfgs', alpha=1., hidden_layer_sizes=(5), random_state=1234)
#self.env = SVC(C=1e-1, random_state=0, dual=False)
#self.env = DT(max_depth=7)
def load_data(self, data_dir):
x_train, y_train, x_valid, y_valid, x_test, y_test = load_imb_Credit_Fraud(data_dir)
self.cost_mat_train = np.array([[1., 10., 0., 0.]]*len(x_train), dtype='float32')
self.cost_mat_valid = np.array([[1., 10., 0., 0.]]*len(x_valid), dtype='float32')
self.cost_mat_test = np.array([[1., 10., 0., 0.]]*len(x_test), dtype='float32')
return x_train, y_train, x_valid, y_valid, x_test, y_test
def get_reward(self, train_x, train_y, train_weights, valid_x, valid_y, test_x, test_y):
idx = train_weights == 1
x = train_x[idx]
y = train_y[idx]
self.env.fit(x, np.argmax(y, axis=1).astype('int32'))
preds = self.env.predict_proba(train_x)[:, 1]
train_reward = evaluate_auc_prc(np.argmax(train_y, axis=1).astype('int32'), preds, pos_label=1)
preds = self.env.predict_proba(valid_x)[:, 1]
valid_reward = evaluate_auc_prc(np.argmax(valid_y, axis=1).astype('int32'), preds, pos_label=1)
#preds = self.env.predict_proba(test_x)[:, 1]
#test_reward = evaluate_auc_prc(np.argmax(test_y, axis=1).astype('int32'), preds, pos_label=1)
return train_reward, valid_reward, valid_reward
class PageTrainer(CreditFraudTrainer):
'''0.88
Compared with: 0.83
'''
def __init__(self):
super(CreditFraudTrainer, self).__init__()
#self.env = LogisticRegression(C=1.)
self.env = MLPClassifier(solver='lbfgs', alpha=1e-1, hidden_layer_sizes=(5), random_state=1234)
def load_data(self, data_dir):
return load_imb_Page(data_dir)
from costcla.datasets import load_creditscoring2
from costcla.models import CostSensitiveLogisticRegression, ThresholdingOptimization
from costcla.metrics import savings_score, cost_loss
from sklearn.cross_validation import train_test_split
class CreditScoreTrainer(CreditFraudTrainer):
def __init__(self):
super(CreditScoreTrainer, self).__init__()
#self.env = LogisticRegression(random_state=0)
# self.env = MLPClassifier(solver='lbfgs', alpha=1., hidden_layer_sizes=(5), random_state=1234)
#self.env = SVC(C=1e0, random_state=0)
self.env = DT(max_depth=7)
def load_data(self, data_dir):
data = load_creditscoring2()
cost_mat = data.cost_mat
sets = train_test_split(data.data, data.target, cost_mat, test_size=0.5, random_state=0)
x_train, x_test, y_train, y_test, cost_mat_train, cost_mat_test = sets
self.cost_mat_train = cost_mat_train
self.cost_mat_test = cost_mat_test
self.cost_mat_valid = cost_mat_test
return x_train, np.eye(2)[y_train], x_test, np.eye(2)[y_test], x_test, np.eye(2)[y_test]
def get_reward(self, train_x, train_y, train_weights, valid_x, valid_y, test_x, test_y):
idx = train_weights == 1
x = train_x[idx]
y = train_y[idx]
self.env.fit(x, np.argmax(y, axis=1).astype('int32'))
probs = self.env.predict_proba(train_x)
preds = (probs[:, 1] > (self.cost_mat_train[:, 0] / self.cost_mat_train[:, 1])).astype('int32')
train_reward = savings_score(np.argmax(train_y, axis=1).astype('int32'), preds, self.cost_mat_train)
probs = self.env.predict_proba(valid_x)
preds = (probs[:, 1] > (self.cost_mat_valid[:, 0] / self.cost_mat_valid[:, 1])).astype('int32')
valid_reward = savings_score(np.argmax(valid_y, axis=1).astype('int32'), preds, self.cost_mat_valid)
probs = self.env.predict_proba(test_x)
preds = (probs[:, 1] > (self.cost_mat_test[:, 0] / self.cost_mat_test[:, 1])).astype('int32')
test_reward = savings_score(np.argmax(test_y, axis=1).astype('int32'), preds, self.cost_mat_test)
return train_reward, valid_reward, test_reward
from sklearn.datasets import make_classification
from sklearn.neighbors import KNeighborsClassifier as KNN
from sklearn.tree import DecisionTreeClassifier as DT
class SynTrainer(CreditFraudTrainer):
def __init__(self):
super(SynTrainer, self).__init__()
self.env = LogisticRegression(C=1e1)
#self.env = KNN(n_neighbors=10)
#self.env = DT(max_depth=3)
#self.env = SVC(C=1e3)
def load_data(self, data_dir):
return load_imb_Gaussian(data_dir)
def get_reward(self, train_x, train_y, train_weights, valid_x, valid_y, test_x, test_y):
idx = train_weights == 1
x = train_x[idx]
y = train_y[idx]
self.env.fit(x, np.argmax(y, axis=1).astype('int32'))
preds = self.env.predict(train_x)
_, _, train_reward = evaluate_f1(np.argmax(train_y, axis=1).astype('int32'), preds, pos_label=1)
preds = self.env.predict(valid_x)
_, _, valid_reward = evaluate_f1(np.argmax(valid_y, axis=1).astype('int32'), preds, pos_label=1)
preds = self.env.predict(test_x)
_, _, test_reward = evaluate_f1(np.argmax(test_y, axis=1).astype('int32'), preds, pos_label=1)
if self.epoch == 50:
np.save('gaussian_weight.npy', np.array(train_weights))
return train_reward[1], valid_reward[1], test_reward[1]
class CheckerBoardTrainer(CreditFraudTrainer):
def __init__(self, imb_ratio=5):
super(CheckerBoardTrainer, self).__init__()
from sklearn.svm import SVC as SVM
self.imb_ratio = imb_ratio
self.env = SVM(C=1e4, kernel='rbf', random_state=0)
def train(self, data_dir='../data/gaussian/', hidden_dim=50, major_ratio=0.05, lr=None):
train_x, train_y, valid_x, valid_y, test_x, test_y = self.load_data(data_dir)
self.policy = GRUPolicy(input_dim=train_x.shape[1] + train_y.shape[1], hidden_dim=hidden_dim)
self.policy.cuda()
if lr is None:
self.optimizer = optim.RMSprop(self.policy.parameters())
else:
self.optimizer = optim.RMSprop(self.policy.parameters(), lr=lr)
best_valid_reward = 0.
best_test_reward = 0.
best_train_reward = 0.
i_episode = 10
epoch = 0
x = Variable(torch.cat([torch.from_numpy(train_x).float(), torch.from_numpy(train_y).float()], dim=1)).cuda()
y = np.zeros((len(train_y), 2)).astype('float32')
idx = np.argmax(train_y, axis=1)
y[idx == 0] = [1 - major_ratio, major_ratio]
y[idx == 1] = [0.1, 0.9]
y = Variable(torch.from_numpy(y).cuda())
self.initialize_policy(self.policy, x, y)
self.epoch = epoch
while True:
weight_probs = self.policy(x)
self.reg = torch.mean(weight_probs[:, 1]) ** 2 * 1e-3
print(weight_probs[:5])
log_probs = []
train_rewards = []
valid_rewards = []
test_rewards = []
for i in range(i_episode):
data_weights, log_prob = self.sample_weight(weight_probs)
train_reward, valid_reward, test_reward = self.get_reward(train_x, train_y, data_weights,
valid_x, valid_y, test_x, test_y)
log_probs.append(log_prob)
train_rewards.append(train_reward)
valid_rewards.append(valid_reward)
test_rewards.append(test_reward)
if best_train_reward < np.mean(train_rewards):
best_valid_reward = np.mean(valid_rewards)
best_test_reward = np.mean(test_rewards)
best_train_reward = np.mean(train_rewards)
np.save('weight_{}.npy'.format(self.imb_ratio), data_weights)
self.update_policy(log_probs, train_rewards)
print('Train reward: {} in epoch: {} '.format(np.mean(train_rewards), self.epoch))
print('Valid reward: {} in epoch: {} '.format(np.mean(valid_rewards), self.epoch))
print('Test reward: {} in epoch: {} '.format(np.mean(test_rewards), self.epoch))
print('Best train reward: {}'.format(best_train_reward))
print('Best valid reward: {}'.format(best_valid_reward))
print('Best test reward: {}'.format(best_test_reward))
self.epoch += 1
def load_data(self, data_dir):
train_x, train_y = load_checker_board(data_dir)
return train_x, train_y, train_x, train_y, train_x, train_y
def get_reward(self, train_x, train_y, train_weights, valid_x, valid_y, test_x, test_y):
idx = train_weights == 1
x = train_x[idx]
y = train_y[idx]
self.env.fit(x, np.argmax(y, axis=1).astype('int32'))
preds = self.env.predict(train_x)
train_reward = evaluate_macro_f1(np.argmax(train_y, axis=1).astype('int32'), preds, pos_label=1)
return train_reward, train_reward, train_reward
class AmazonTrainer(object):
def __init__(self):
self.env = LogisticRegression(C=1) #MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5), random_state=1)
def train(self, data_dir='../data/cmd/', hidden_dim=50, source_domain=0, target_domain=3, lr=None):
train_x, train_y, valid_x, valid_y, test_x, test_y = self.load_data(data_dir,
source_domain=source_domain,
target_domain=target_domain)
valid_x = valid_x[:100]
valid_y = valid_y[:100]
x = np.concatenate([train_x, valid_x])
y = np.concatenate([train_y, valid_y])
self.env.fit(x, np.argmax(y, axis=1))
preds = self.env.predict(test_x)
original_test_reward = accuracy_score(np.argmax(test_y, axis=1), preds)
print('Original test reward:{}'.format(original_test_reward))
dim = 30
x = self.pca(train_x, dim=dim)
self.policy = GRUPolicy(input_dim=dim + train_y.shape[1], hidden_dim=hidden_dim)
self.policy.cuda()
if lr is None:
self.optimizer = optim.RMSprop(self.policy.parameters())
else:
self.optimizer = optim.RMSprop(self.policy.parameters(), lr=lr)
best_valid_reward = 0.
best_test_reward = 0.
i_episode = 10
epoch = 0
x = Variable(torch.cat([torch.from_numpy(x).float(), torch.from_numpy(train_y).float()], dim=1)).cuda()
while True:
weight_probs = self.policy(x)
self.reg = -torch.mean(weight_probs[:, 1]) * 1e-4
print(weight_probs)
log_probs = []
train_rewards = []
valid_rewards = []
test_rewards = []
for i in range(i_episode):
data_weights, log_prob = self.sample_weight(weight_probs)
train_reward, valid_reward, test_reward = self.get_reward(train_x, train_y, data_weights,
valid_x, valid_y, test_x, test_y)
log_probs.append(log_prob)
train_rewards.append(train_reward)
valid_rewards.append(valid_reward)
test_rewards.append(test_reward)
if best_valid_reward < np.mean(valid_rewards):
best_valid_reward = np.mean(valid_rewards)
best_test_reward = np.mean(test_rewards)
self.update_policy(log_probs, valid_rewards)
print('Train reward: {} in epoch: {} '.format(np.mean(train_rewards), epoch))
print('Valid reward: {} in epoch: {} '.format(np.mean(valid_rewards), epoch))
print('Test reward: {} in epoch: {} '.format(np.mean(test_rewards), epoch))
print('Best valid reward: {}'.format(best_valid_reward))
print('Best test reward: {}'.format(best_test_reward))
print('Original test reward:{}'.format(original_test_reward))
epoch += 1
print('Best valid reward: {}'.format(best_valid_reward))
print('Best test reward: {}'.format(best_test_reward))
print('Original test reward:{}'.format(original_test_reward))
def pca(self, x, dim=50):
from sklearn.decomposition import PCA
pca = PCA(n_components=dim)
return pca.fit_transform(x)
def sample_weight(self, probs):
if not isinstance(probs, Variable):
probs = Variable(probs)
m = Categorical(probs)
action = m.sample()
return action.data.cpu().numpy(), m.log_prob(action).mean().cuda()
def get_reward(self, train_x, train_y, train_weights, valid_x, valid_y, test_x, test_y):
'''Train the classifier with supervised
:param train_x:
:param train_y:
:param train_weights:
:param valid_x:
:param valid_y:
:return: The reward (F1)
'''
from sklearn.metrics import accuracy_score
idx = train_weights == 1
x = train_x[idx]
y = train_y[idx]
self.env.fit(x, np.argmax(y, axis=1))
preds = self.env.predict(train_x)
train_reward = accuracy_score(np.argmax(train_y, axis=1), preds)
preds = self.env.predict(valid_x)
valid_reward = accuracy_score(np.argmax(valid_y, axis=1), preds)
x = np.concatenate([x, valid_x])
y = np.concatenate([y, valid_y])
self.env.fit(x, np.argmax(y, axis=1))
preds = self.env.predict(test_x)
test_reward = accuracy_score(np.argmax(test_y, axis=1), preds)
return train_reward, valid_reward, test_reward
def update_policy(self, log_probs, rewards):
rewards = Variable(torch.Tensor(rewards).cuda())
policy_loss = []
rewards = (rewards - rewards.mean()) / (rewards.std() + float(np.finfo(np.float32).eps))
for log_prob, reward in zip(log_probs, rewards):
policy_loss.append(-log_prob * reward)
self.optimizer.zero_grad()
policy_loss = torch.cat(policy_loss).sum()
print('policy loss:{}'.format(policy_loss.data.cpu()))
print('reg:{}'.format(self.reg.data.cpu()))
(policy_loss + self.reg).backward()
self.optimizer.step()
def load_data(self, data_dir, n_features=5000, source_domain=0, target_domain=3):
return load_amazon(filename=data_dir, n_features=n_features,
source_domain=source_domain, target_domain=target_domain)
def initialize_policy(self, policy, x, y, epoch=50):
optimizer = optim.RMSprop(policy.parameters(), lr=0.001)
for e in range(epoch):
probs = policy(x)
print(probs)
loss = -torch.mean(torch.sum(y * torch.log(probs), dim=1))
optimizer.zero_grad()
loss.backward()
optimizer.step()
class VehicleTrainer(GRUTrainer):
def __init__(self):
super(VehicleTrainer, self).__init__()
from sklearn.svm import SVC as SVM
#elf.env = MLPClassifier(solver='lbfgs', alpha=1e-3, hidden_layer_sizes=(8), random_state=1)
#self.env = SVM(C=1e2, kernel='rbf', random_state=0) # For vehicle task
#self.env = SVM(C=1e2, kernel='rbf', random_state=0, gamma=1e-2) # For page blocks
#self.env = DT(max_depth=4) # For credit card task
self.env = LogisticRegression(C=1e2, random_state=0) # For spam detection task
def get_reward(self, train_x, train_y, train_weights, valid_x, valid_y, test_x, test_y):
'''Train the classifier with supervised
:param train_x:
:param train_y:
:param train_weights:
:param valid_x:
:param valid_y:
:return: The reward (F1)
'''
from imblearn.metrics import geometric_mean_score
from sklearn.metrics import matthews_corrcoef
idx = train_weights == 1
x = train_x[idx]
y = train_y[idx]
self.env.fit(x, np.argmax(y, axis=1).astype('int32'))
preds = self.env.predict(valid_x)
valid_reward = evaluate_f2(np.argmax(valid_y, axis=1).astype('int32'), preds)
return valid_reward, valid_reward, valid_reward
def load_data(self, data_dir):
train_x, train_y, valid_x, valid_y = load_imb_Vehicle(data_dir)
return train_x, train_y, valid_x, valid_y, valid_x, valid_y
if __name__ == '__main__':
#trainer = HImbGaussianTrainer()
#trainer.train(input_hidden_dims=[5], union_hidden_dims=[])
#trainer = SynTrainer()
#trainer.train(hidden_dims=[10, 5])
#trainer = LFWTrainer()
#trainer.train(hidden_dim=100, major_ratio=0.2, lr=0.001)
#trainer = CreditFraudTrainer()
#trainer.train(data_dir='../data/real/creditcard/', hidden_dim=50, major_ratio=0.1, lr=0.001)
#trainer = PageTrainer()
#trainer.train(data_dir='../data/real/page/', hidden_dim=25, major_ratio=0.1, lr=0.001)
#trainer = SynTrainer()
#trainer.train(data_dir='../data/gaussian/', hidden_dim=25, major_ratio=0.1, lr=0.0001)
#trainer = CreditScoreTrainer()
#trainer.train(data_dir='../data/real/creditcard/', hidden_dim=50, major_ratio=0.1, lr=0.001)
#trainer = AmazonTrainer()
#trainer.train(data_dir='../data/real/cmd/amazon.mat', hidden_dim=50, source_domain=2, target_domain=1, lr=0.001)
#import sys
import sys
name = sys.argv[1]
trainer = VehicleTrainer()
trainer.train(data_dir='../data/real/spam/train.pkl'.format(name), hidden_dim=50, major_ratio=0.1, lr=0.001)
#imb_ratio = int(sys.argv[1])
#trainer = CheckerBoardTrainer(imb_ratio=imb_ratio)
#trainer.train(data_dir='../data/synthetic/checkerboard/train_{}.pkl'.format(imb_ratio), hidden_dim=25,
# major_ratio=1./imb_ratio, lr=0.001)
#folder = int(sys.argv[1])
#trainer = LFWTrainer(folder=folder)
#trainer.train(data_dir='..', hidden_dim=25, major_ratio=0.2, lr=0.0002)