diff --git a/README.md b/README.md
index 202bb8c..d40c2f0 100644
--- a/README.md
+++ b/README.md
@@ -9,44 +9,13 @@ Intensity-based registration algorithm repository: https://github.com/uw-loci/sh
|||
## Required packages
-Install required packages in a virtual environment, commands for anaconda/miniconda (https://www.anaconda.com/distribution/) are listed
-* python==3.6.x
+Install [anaconda/miniconda](https://docs.conda.io/en/latest/miniconda.html)
+Required packages
```
- conda create --name [NAME_ENV] python=3.6
- conda activate [NAME_ENV]
+ $ conda env create --name syn --file env.yml
+ $ conda activate syn
```
-* matplotlib==3.1.2
-```
- conda install -c conda-forge matplotlib=3.1.2
-```
-* numpy==1.17.4
-```
- conda install -c anaconda numpy=1.17.4
-```
-* pandas==0.25.3
-```
- conda install -c anaconda pandas=0.25.3
-```
-* Pillow==5.3.0
-```
- conda install -c anaconda pillow=5.3.0
-```
-* pyimagej==0.4.0
-```
-conda install -c conda-forge pyimagej
-```
-* scikit-image==0.16.2
-```
- conda install -c anaconda scikit-image=0.16.2
-```
-* tqdm==4.42.0
-```
- conda install -c conda-forge tqdm=4.42.0
-```
-* pytorch>=1.3.1
-```
- conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
-```
+
## Download example testing data, trained model weights, FIJI
Execute download.py
```
diff --git a/main.py b/main.py
index 32821c6..7611cfd 100644
--- a/main.py
+++ b/main.py
@@ -69,7 +69,7 @@ def main():
parser.add_argument('--load-multiple-gpu-weights', type=int, default=1, help='1: multiple gpu weights, 0: single gpu weghts')
parser.add_argument('--input-folder', type=str, default='default', help='input_test + _FOLDERNAME')
parser.add_argument('--intensity', type=tuple, default=(20, 180), help='output intensity rescale')
- parser.add_argument('--pilot', type=int, default=0, help='1: only process the first image, 0: process all images')
+ parser.add_argument('--pilot', type=int, default=1, help='1: only process the first image, 0: process all images')
args = parser.parse_args()
@@ -104,7 +104,7 @@ def demo(args):
model.to(device)
print('loading ImageJ, please wait')
- ij = imagej.init('fiji/fiji/Fiji.app/')
+ ij = imagej.init('fiji/Fiji.app/')
# use for SHG
TASK = args.input_folder
@@ -165,6 +165,7 @@ def demo(args):
io.imsave(OUTPUT_PATCH_DIR+img_name, result_patch)
print('stitching, please wait...')
+ os.makedirs(CHANNEL_DIR, exist_ok=True)
params = {'type': 'Positions from file', 'order': 'Defined by TileConfiguration',
'directory':OUTPUT_PATCH_DIR, 'ayout_file': 'TileConfiguration.txt',
'fusion_method': 'Linear Blending', 'regression_threshold': '0.30',
@@ -172,7 +173,7 @@ def demo(args):
'compute_overlap':False, 'computation_parameters': 'Save computation time (but use more RAM)',
'image_output': 'Write to disk', 'output_directory': CHANNEL_DIR}
plugin = "Grid/Collection stitching"
- ij.py.run_plugin(plugin, params)
+ ij.py.run_plugin(plugin, params)
output_name = os.path.join(OUTPUT_DIR, fn)
listOfChannels = [f for f in os.listdir(CHANNEL_DIR)]
@@ -180,10 +181,11 @@ def demo(args):
c1 = c1[:img.shape[0], :img.shape[1]]
c1 = img_as_ubyte(c1)
c1 = exposure.rescale_intensity(c1, in_range=args.intensity, out_range=(0, 255))
+ c1 = exposure.rescale_intensity(c1, in_range=(0, 255), out_range=(0, 1))
print(str(k+1)+"/" + str(len(files)) + " output saved as: " + output_name)
io.imsave(output_name, img_as_ubyte(c1))
if args.pilot:
break
if __name__ == '__main__':
- main()
+ main()
\ No newline at end of file