diff --git a/gym_pybullet_drones/envs/BaseAviary.py b/gym_pybullet_drones/envs/BaseAviary.py index 70b0a40a4..8de25c03c 100755 --- a/gym_pybullet_drones/envs/BaseAviary.py +++ b/gym_pybullet_drones/envs/BaseAviary.py @@ -338,7 +338,6 @@ def step(self, ) for i in range(self.NUM_DRONES)] #### Save, preprocess, and clip the action to the max. RPM # else: - self._saveLastAction(action) clipped_action = np.reshape(self._preprocessAction(action), (self.NUM_DRONES, 4)) #### Repeat for as many as the aggregate physics steps ##### for _ in range(self.PYB_STEPS_PER_CTRL): @@ -466,7 +465,6 @@ def _housekeeping(self): self.GUI_INPUT_TEXT = -1*np.ones(self.NUM_DRONES) self.USE_GUI_RPM=False self.last_input_switch = 0 - self.last_action = -1*np.ones((self.NUM_DRONES, 4)) self.last_clipped_action = np.zeros((self.NUM_DRONES, 4)) self.gui_input = np.zeros(4) #### Initialize the drones kinemaatic information ########## @@ -916,23 +914,6 @@ def _normalizedActionToRPM(self, ################################################################################ - def _saveLastAction(self, - action - ): - """Stores the most recent action into attribute `self.last_action`. - - The last action can be used to compute aerodynamic effects. - - Parameters - ---------- - action : ndarray - Ndarray containing the current RPMs input for each drone. - - """ - self.last_action = np.reshape(action, (self.NUM_DRONES, 4)) - - ################################################################################ - def _showDroneLocalAxes(self, nth_drone ): diff --git a/gym_pybullet_drones/examples/learn.py b/gym_pybullet_drones/examples/learn.py index f80b1a7a2..fc9042cee 100644 --- a/gym_pybullet_drones/examples/learn.py +++ b/gym_pybullet_drones/examples/learn.py @@ -37,10 +37,10 @@ DEFAULT_OUTPUT_FOLDER = 'results' DEFAULT_COLAB = False -DEFAULT_OBS = ObservationType('kin') -DEFAULT_ACT = ActionType('rpm') -DEFAULT_AGENTS = 2 -DEFAULT_MA = True +DEFAULT_OBS = ObservationType('kin') # 'kin' or 'rgb' +DEFAULT_ACT = ActionType('vel') # 'rpm' or 'pid' or 'vel' or 'one_d_rpm' / TO BE FIXED: 'one_d_pid' +DEFAULT_AGENTS = 3 +DEFAULT_MA = False def run(output_folder=DEFAULT_OUTPUT_FOLDER, gui=DEFAULT_GUI, plot=True, colab=DEFAULT_COLAB, record_video=DEFAULT_RECORD_VIDEO): @@ -152,27 +152,28 @@ def run(output_folder=DEFAULT_OUTPUT_FOLDER, gui=DEFAULT_GUI, plot=True, colab=D obs2 = obs.squeeze() act2 = action.squeeze() print("Obs:", obs, "\tAction", action, "\tReward:", reward, "\tTerminated:", terminated, "\tTruncated:", truncated) - if not DEFAULT_MA: - logger.log(drone=0, - timestamp=i/test_env.CTRL_FREQ, - state=np.hstack([obs2[0:3], - np.zeros(4), - obs2[3:15], - act2 - ]), - control=np.zeros(12) - ) - else: - for d in range(DEFAULT_AGENTS): - logger.log(drone=d, + if DEFAULT_OBS == ObservationType.KIN: + if not DEFAULT_MA: + logger.log(drone=0, timestamp=i/test_env.CTRL_FREQ, - state=np.hstack([obs2[d][0:3], + state=np.hstack([obs2[0:3], np.zeros(4), - obs2[d][3:15], - act2[d] + obs2[3:15], + act2 ]), control=np.zeros(12) ) + else: + for d in range(DEFAULT_AGENTS): + logger.log(drone=d, + timestamp=i/test_env.CTRL_FREQ, + state=np.hstack([obs2[d][0:3], + np.zeros(4), + obs2[d][3:15], + act2[d] + ]), + control=np.zeros(12) + ) test_env.render() print(terminated) sync(i, start, test_env.CTRL_TIMESTEP) @@ -180,7 +181,7 @@ def run(output_folder=DEFAULT_OUTPUT_FOLDER, gui=DEFAULT_GUI, plot=True, colab=D obs = test_env.reset(seed=42, options={}) test_env.close() - if plot: + if plot and DEFAULT_OBS == ObservationType.KIN: logger.plot() if __name__ == '__main__':