-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyze.py
245 lines (179 loc) · 7.64 KB
/
analyze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
'''Plotting functions for histograms and stars-vs-citations ellipses
'''
import matplotlib.pyplot as plt
import numpy as np
from sympy import *
from sklearn.covariance import MinCovDet
import tikzplotlib
import json
import pandas as pd
# Fixes AttributeError when using a legend in matplotlib for tikzplotlib
from matplotlib.lines import Line2D
from matplotlib.legend import Legend
Line2D._us_dashSeq = property(lambda self: self._dash_pattern[1])
Line2D._us_dashOffset = property(lambda self: self._dash_pattern[0])
Legend._ncol = property(lambda self: self._ncols)
from column_ids import ColumnIDs
def get_conf_year(file_name):
''' Returns the conference year from a file name, e.g.,
extracts 2016 from '2016_DATA.json' '''
return int(''.join(filter(str.isdigit, file_name)))
def historical_papers(conf, spreadsheets, years, cfg):
''' Returns number of papers with and without code over the years
Args:
None
'''
output_folder = cfg['SAVE_DIR']
plt_filename = output_folder + 'Percentage of Papers with Code at ' + conf
for i in range(len(spreadsheets)):
spreadsheets[i] = './' + conf + '/' + spreadsheets[i]
## Define data
with_code = []
without_code = []
tot_papers = []
for sheet in spreadsheets:
## Open spreadsheet
try:
with open(sheet) as json_file:
parsed_json = json.load(json_file)
parsed_json = json.loads(parsed_json)
df = pd.DataFrame(parsed_json)
code_key = df.columns[ColumnIDs.CODE - 1]
except:
print('ERROR: file {} does not exist'.format(sheet))
return
print('Opened:', sheet)
with_code_num = 0
without_code_num = 0
last_row = len(df.index)
year_tot = 0
for r in range(last_row):
year_tot += 1
val = df[code_key].iloc[r]
try:
list_value = val.splitlines()
except:
without_code_num += 1
continue
found_code = False
if conf in ['CDC', 'ICRA']:
for item in list_value:
if 'github.com' in item.lower():
found_code = True
break
else:
for item in list_value:
if item != 'None' and item != '[]':
found_code = True
if found_code:
with_code_num += 1
else:
without_code_num += 1
with_code.append(with_code_num)
without_code.append(without_code_num)
tot_papers.append(year_tot)
year_tot = 0
x_axis = np.arange(len(years))
# Graph double bar chart across time
plt.bar(x_axis +0.2, with_code, width=0.4, label='Papers With Code', color='green')
plt.bar(x_axis -0.2, tot_papers, width=0.4, label='Total Papers', color='grey')
for i in range(len(years)):
with_code_txt = str(round(with_code[i] / tot_papers[i] * 100, 1)) + '%'
plt.text((x_axis +0.2)[i], with_code[i] + 1, with_code_txt, ha='center', fontsize=12)
plt.text((x_axis -0.2)[i], tot_papers[i] + 1, tot_papers[i], ha='center', fontsize=12)
plt.xticks(x_axis, years, fontsize=12)
plt.yticks(fontsize=12)
plt.legend(fontsize=12)
plt_title = 'Percentage of Papers with Code at ' + conf
plt.title(plt_title, fontsize=18)
plt.xlabel('Conference Year', fontsize=14)
plt.ylabel('Number of Papers', fontsize=14)
tikzplotlib.save(plt_filename + '.tex')
plt.savefig(plt_filename + '.png')
plt.show()
def plot_ellipsoid(mean, covariance, s, circle, line, year, color):
eig_values, eig_vectors = np.linalg.eig(s * covariance)
area = np.pi * np.sqrt(eig_values[0] * eig_values[1])
print('Area {}: {:.2f}'.format(year, area))
if max(eig_values) > eig_values[0]:
eig_values = np.array([eig_values[1], eig_values[0]]).T
eig_vectors = np.array([eig_vectors[:, 1], eig_vectors[:, 0]])
rotated_ellipse = eig_vectors @ np.diag(np.sqrt(eig_values)) @ np.vstack((circle[0], circle[1]))
plt.plot(rotated_ellipse[0, :] + mean[0], rotated_ellipse[1, :] + mean[1], color + '-',
label=year)
rotated_line = eig_vectors @ np.diag(np.sqrt(eig_values)) @ np.vstack((line[0], line[1]))
slope = np.abs(rotated_line[1, -1]/ rotated_line[0, -1])
print('Slope {}: {}'.format(year, slope))
plt.plot(rotated_line[0, :] + mean[0], rotated_line[1, :] + mean[1], color + '-')
plt.plot(mean[0], mean[1], color + 'x')
return area, slope
def stars_vs_citations(conf, spreadsheets, cfg):
''' Plots a scatter plot of github stars versus citations for papers
with github code.
'''
output_folder = cfg['SAVE_DIR']
plt_filename = output_folder + 'Github Stars vs Paper Citations in ' + conf
colors = ['b', 'g', 'r', 'c', 'm', 'y']
confidence = 0.99
s = -2 * np.log(1 - confidence)
angle = np.linspace(0, 2 * np.pi)
areas = []
slopes = []
circle = [np.cos(angle), np.sin(angle)]
line = [np.array([-1, 1]), np.array([0, 0])]
for i in range(len(spreadsheets)):
spreadsheets[i] = './' + conf + '/' + spreadsheets[i]
for i, sheet in enumerate(spreadsheets):
## Define data
paper_stars = []
paper_citations = []
paper_titles = []
## Open spreadsheet
try:
with open(sheet) as json_file:
parsed_json = json.load(json_file)
parsed_json = json.loads(parsed_json)
df = pd.DataFrame(parsed_json)
citation_key = df.columns[ColumnIDs.CITATION - 1]
star_key = df.columns[ColumnIDs.STAR - 1]
title_key = df.columns[ColumnIDs.TITLE - 1]
except:
print('ERROR: file {} does not exist'.format(sheet))
return
print('Opened:', sheet)
year = get_conf_year(sheet)
last_row = len(df.index)
for r in range(last_row):
val = df[star_key].iloc[r]
val2 = df[citation_key].iloc[r]
if val2 == -1 or val == -1:
continue
# Store the number of citations
paper_citations.append(val2)
# Store the number of stars
paper_stars.append(val)
# Store paper title
val3 = df[title_key].iloc[r]
paper_titles.append(val3)
data = np.vstack((np.array(paper_stars), np.array(paper_citations))).T
result = MinCovDet(assume_centered=False).fit(data)
cov = result.covariance_
mean = result.location_
area, slope = plot_ellipsoid(mean, cov, s, circle, line, year, colors[i])
areas.append(area)
slopes.append(slope)
areas = np.array(areas[::-1])
diff_percentages_area = np.diff(areas) / areas[:-1] * 100.0
print('diff changes area: ', ['{:.2f} %'.format(percent) for percent in diff_percentages_area])
slopes = np.array(slopes[::-1])
diff_percentages_slope = np.diff(slopes) / slopes[:-1] * 100.0
print('diff changes slope: ', ['{:.2f} %'.format(percent) for percent in diff_percentages_slope])
plt.legend(fontsize=12)
plt.xlabel('Github Stars', fontsize=14)
plt.ylabel('Semantic Scholar Citations', fontsize=14)
plt.xlim([0, 500])
plt.ylim([0, 500])
plt.title(conf)
tikzplotlib.save(plt_filename + '.tex')
plt.savefig(plt_filename + '.png')
plt.show()