-
Notifications
You must be signed in to change notification settings - Fork 101
/
helper.py
285 lines (213 loc) · 7.73 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import errno
import json
import os
import cv2
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy.misc
from scipy.ndimage import rotate
from scipy.stats import bernoulli
# Some useful constants
DRIVING_LOG_FILE = './data/driving_log.csv'
IMG_PATH = './data/'
STEERING_COEFFICIENT = 0.229
def crop(image, top_percent, bottom_percent):
"""
Crops an image according to the given parameters
:param image: source image
:param top_percent:
The percentage of the original image will be cropped from the top of the image
:param bottom_percent:
The percentage of the original image will be cropped from the bottom of the image
:return:
The cropped image
"""
assert 0 <= top_percent < 0.5, 'top_percent should be between 0.0 and 0.5'
assert 0 <= bottom_percent < 0.5, 'top_percent should be between 0.0 and 0.5'
top = int(np.ceil(image.shape[0] * top_percent))
bottom = image.shape[0] - int(np.ceil(image.shape[0] * bottom_percent))
return image[top:bottom, :]
def resize(image, new_dim):
"""
Resize a given image according the the new dimension
:param image:
Source image
:param new_dim:
A tuple which represents the resize dimension
:return:
Resize image
"""
return scipy.misc.imresize(image, new_dim)
def random_flip(image, steering_angle, flipping_prob=0.5):
"""
Based on the outcome of an coin flip, the image will be flipped.
If flipping is applied, the steering angle will be negated.
:param image: Source image
:param steering_angle: Original steering angle
:return: Both flipped image and new steering angle
"""
head = bernoulli.rvs(flipping_prob)
if head:
return np.fliplr(image), -1 * steering_angle
else:
return image, steering_angle
def random_gamma(image):
"""
Random gamma correction is used as an alternative method changing the brightness of
training images.
http://www.pyimagesearch.com/2015/10/05/opencv-gamma-correction/
:param image:
Source image
:return:
New image generated by applying gamma correction to the source image
"""
gamma = np.random.uniform(0.4, 1.5)
inv_gamma = 1.0 / gamma
table = np.array([((i / 255.0) ** inv_gamma) * 255
for i in np.arange(0, 256)]).astype("uint8")
# apply gamma correction using the lookup table
return cv2.LUT(image, table)
def random_shear(image, steering_angle, shear_range=200):
"""
Source: https://medium.com/@ksakmann/behavioral-cloning-make-a-car-drive-like-yourself-dc6021152713#.7k8vfppvk
:param image:
Source image on which the shear operation will be applied
:param steering_angle:
The steering angle of the image
:param shear_range:
Random shear between [-shear_range, shear_range + 1] will be applied
:return:
The image generated by applying random shear on the source image
"""
rows, cols, ch = image.shape
dx = np.random.randint(-shear_range, shear_range + 1)
random_point = [cols / 2 + dx, rows / 2]
pts1 = np.float32([[0, rows], [cols, rows], [cols / 2, rows / 2]])
pts2 = np.float32([[0, rows], [cols, rows], random_point])
dsteering = dx / (rows / 2) * 360 / (2 * np.pi * 25.0) / 6.0
M = cv2.getAffineTransform(pts1, pts2)
image = cv2.warpAffine(image, M, (cols, rows), borderMode=1)
steering_angle += dsteering
return image, steering_angle
def random_rotation(image, steering_angle, rotation_amount=15):
"""
:param image:
:param steering_angle:
:param rotation_amount:
:return:
"""
angle = np.random.uniform(-rotation_amount, rotation_amount + 1)
rad = (np.pi / 180.0) * angle
return rotate(image, angle, reshape=False), steering_angle + (-1) * rad
def min_max(data, a=-0.5, b=0.5):
"""
:param data:
:param a:
:param b:
:return:
"""
data_max = np.max(data)
data_min = np.min(data)
return a + (b - a) * ((data - data_min) / (data_max - data_min))
def generate_new_image(image, steering_angle, top_crop_percent=0.35, bottom_crop_percent=0.1,
resize_dim=(64, 64), do_shear_prob=0.9):
"""
:param image:
:param steering_angle:
:param top_crop_percent:
:param bottom_crop_percent:
:param resize_dim:
:param do_shear_prob:
:param shear_range:
:return:
"""
head = bernoulli.rvs(do_shear_prob)
if head == 1:
image, steering_angle = random_shear(image, steering_angle)
image = crop(image, top_crop_percent, bottom_crop_percent)
image, steering_angle = random_flip(image, steering_angle)
image = random_gamma(image)
image = resize(image, resize_dim)
return image, steering_angle
def get_next_image_files(batch_size=64):
"""
The simulator records three images (namely: left, center, and right) at a given time
However, when we are picking images for training we randomly (with equal probability)
one of these three images and its steering angle.
:param batch_size:
Size of the image batch
:return:
An list of selected (image files names, respective steering angles)
"""
data = pd.read_csv(DRIVING_LOG_FILE)
num_of_img = len(data)
rnd_indices = np.random.randint(0, num_of_img, batch_size)
image_files_and_angles = []
for index in rnd_indices:
rnd_image = np.random.randint(0, 3)
if rnd_image == 0:
img = data.iloc[index]['left'].strip()
angle = data.iloc[index]['steering'] + STEERING_COEFFICIENT
image_files_and_angles.append((img, angle))
elif rnd_image == 1:
img = data.iloc[index]['center'].strip()
angle = data.iloc[index]['steering']
image_files_and_angles.append((img, angle))
else:
img = data.iloc[index]['right'].strip()
angle = data.iloc[index]['steering'] - STEERING_COEFFICIENT
image_files_and_angles.append((img, angle))
return image_files_and_angles
def generate_next_batch(batch_size=64):
"""
This generator yields the next training batch
:param batch_size:
Number of training images in a single batch
:return:
A tuple of features and steering angles as two numpy arrays
"""
while True:
X_batch = []
y_batch = []
images = get_next_image_files(batch_size)
for img_file, angle in images:
raw_image = plt.imread(IMG_PATH + img_file)
raw_angle = angle
new_image, new_angle = generate_new_image(raw_image, raw_angle)
X_batch.append(new_image)
y_batch.append(new_angle)
assert len(X_batch) == batch_size, 'len(X_batch) == batch_size should be True'
yield np.array(X_batch), np.array(y_batch)
def save_model(model, model_name='model.json', weights_name='model.h5'):
"""
Save the model into the hard disk
:param model:
Keras model to be saved
:param model_name:
The name of the model file
:param weights_name:
The name of the weight file
:return:
None
"""
silent_delete(model_name)
silent_delete(weights_name)
json_string = model.to_json()
with open(model_name, 'w') as outfile:
json.dump(json_string, outfile)
model.save_weights(weights_name)
def silent_delete(file):
"""
This method delete the given file from the file system if it is available
Source: http://stackoverflow.com/questions/10840533/most-pythonic-way-to-delete-a-file-which-may-not-exist
:param file:
File to be deleted
:return:
None
"""
try:
os.remove(file)
except OSError as error:
if error.errno != errno.ENOENT:
raise