-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgenerators.py
410 lines (341 loc) · 16.3 KB
/
generators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
"""generation functions have signature `(grid_shape: Coord, **kwargs) -> LatticeMaze` and are methods in `LatticeMazeGenerators`
"""
import random
import warnings
from typing import Any, Callable
import numpy as np
from jaxtyping import Bool
from muutils.mlutils import GLOBAL_SEED
from maze_dataset.constants import CoordArray
from maze_dataset.maze import ConnectionList, Coord, LatticeMaze, SolvedMaze
from maze_dataset.maze.lattice_maze import NEIGHBORS_MASK, _fill_edges_with_walls
numpy_rng = np.random.default_rng(GLOBAL_SEED)
random.seed(GLOBAL_SEED)
def _random_start_coord(grid_shape: Coord, start_coord: Coord | None) -> Coord:
"picking a random start coord within the bounds of `grid_shape` if none is provided"
if start_coord is None:
start_coord: Coord = np.random.randint(
0, # lower bound
np.maximum(grid_shape - 1, 1), # upper bound (at least 1)
size=len(grid_shape), # dimensionality
)
else:
start_coord = np.array(start_coord)
return start_coord
def get_neighbors_in_bounds(
coord: Coord,
grid_shape: Coord,
) -> CoordArray:
"get all neighbors of a coordinate that are within the bounds of the grid"
# get all neighbors
neighbors: CoordArray = coord + NEIGHBORS_MASK
# filter neighbors by being within grid bounds
neighbors_in_bounds: CoordArray = neighbors[
(neighbors >= 0).all(axis=1) & (neighbors < grid_shape).all(axis=1)
]
return neighbors_in_bounds
class LatticeMazeGenerators:
"""namespace for lattice maze generation algorithms"""
@staticmethod
def gen_dfs(
grid_shape: Coord,
lattice_dim: int = 2,
accessible_cells: int | float | None = None,
max_tree_depth: int | float | None = None,
do_forks: bool = True,
randomized_stack: bool = False,
start_coord: Coord | None = None,
) -> LatticeMaze:
"""generate a lattice maze using depth first search, iterative
# Arguments
- `grid_shape: Coord`: the shape of the grid
- `lattice_dim: int`: the dimension of the lattice
(default: `2`)
- `accessible_cells: int | float |None`: the number of accessible cells in the maze. If `None`, defaults to the total number of cells in the grid. if a float, asserts it is <= 1 and treats it as a proportion of **total cells**
(default: `None`)
- `max_tree_depth: int | float | None`: the maximum depth of the tree. If `None`, defaults to `2 * accessible_cells`. if a float, asserts it is <= 1 and treats it as a proportion of the **sum of the grid shape**
(default: `None`)
- `do_forks: bool`: whether to allow forks in the maze. If `False`, the maze will be have no forks and will be a simple hallway.
- `start_coord: Coord | None`: the starting coordinate of the generation algorithm. If `None`, defaults to a random coordinate.
# algorithm
1. Choose the initial cell, mark it as visited and push it to the stack
2. While the stack is not empty
1. Pop a cell from the stack and make it a current cell
2. If the current cell has any neighbours which have not been visited
1. Push the current cell to the stack
2. Choose one of the unvisited neighbours
3. Remove the wall between the current cell and the chosen cell
4. Mark the chosen cell as visited and push it to the stack
"""
# Default values if no constraints have been passed
grid_shape: Coord = np.array(grid_shape)
n_total_cells: int = int(np.prod(grid_shape))
n_accessible_cells: int
if accessible_cells is None:
n_accessible_cells = n_total_cells
elif isinstance(accessible_cells, float):
assert (
accessible_cells <= 1
), f"accessible_cells must be an int (count) or a float in the range [0, 1] (proportion), got {accessible_cells}"
n_accessible_cells = int(accessible_cells * n_total_cells)
else:
assert isinstance(accessible_cells, int)
n_accessible_cells = accessible_cells
if max_tree_depth is None:
max_tree_depth = (
2 * n_total_cells
) # We define max tree depth counting from the start coord in two directions. Therefore we divide by two in the if clause for neighboring sites later and multiply by two here.
elif isinstance(max_tree_depth, float):
assert (
max_tree_depth <= 1
), f"max_tree_depth must be an int (count) or a float in the range [0, 1] (proportion), got {max_tree_depth}"
max_tree_depth = int(max_tree_depth * np.sum(grid_shape))
# choose a random start coord
start_coord = _random_start_coord(grid_shape, start_coord)
# initialize the maze with no connections
connection_list: ConnectionList = np.zeros(
(lattice_dim, grid_shape[0], grid_shape[1]), dtype=np.bool_
)
# initialize the stack with the target coord
visited_cells: set[tuple[int, int]] = set()
visited_cells.add(tuple(start_coord)) # this wasnt a bug after all lol
stack: list[Coord] = [start_coord]
# initialize tree_depth_counter
current_tree_depth: int = 1
# loop until the stack is empty or n_connected_cells is reached
while stack and (len(visited_cells) < n_accessible_cells):
# get the current coord from the stack
current_coord: Coord
if randomized_stack:
current_coord = stack.pop(random.randint(0, len(stack) - 1))
else:
current_coord = stack.pop()
# filter neighbors by being within grid bounds and being unvisited
unvisited_neighbors_deltas: list[tuple[Coord, Coord]] = [
(neighbor, delta)
for neighbor, delta in zip(
current_coord + NEIGHBORS_MASK, NEIGHBORS_MASK
)
if (
(tuple(neighbor) not in visited_cells)
and (0 <= neighbor[0] < grid_shape[0])
and (0 <= neighbor[1] < grid_shape[1])
)
]
# don't continue if max_tree_depth/2 is already reached (divide by 2 because we can branch to multiple directions)
if unvisited_neighbors_deltas and (
current_tree_depth <= max_tree_depth / 2
):
# if we want a maze without forks, simply don't add the current coord back to the stack
if do_forks and (len(unvisited_neighbors_deltas) > 1):
stack.append(current_coord)
# choose one of the unvisited neighbors
chosen_neighbor, delta = random.choice(unvisited_neighbors_deltas)
# add connection
dim: int = np.argmax(np.abs(delta))
# if positive, down/right from current coord
# if negative, up/left from current coord (down/right from neighbor)
clist_node: Coord = (
current_coord if (delta.sum() > 0) else chosen_neighbor
)
connection_list[dim, clist_node[0], clist_node[1]] = True
# add to visited cells and stack
visited_cells.add(tuple(chosen_neighbor))
stack.append(chosen_neighbor)
# Update current tree depth
current_tree_depth += 1
else:
current_tree_depth -= 1
output = LatticeMaze(
connection_list=connection_list,
generation_meta=dict(
func_name="gen_dfs",
grid_shape=grid_shape,
start_coord=start_coord,
n_accessible_cells=int(n_accessible_cells),
max_tree_depth=int(max_tree_depth),
# oh my god this took so long to track down. its almost 5am and I've spent like 2 hours on this bug
# it was checking that len(visited_cells) == n_accessible_cells, but this means that the maze is
# treated as fully connected even when it is most certainly not, causing solving the maze to break
fully_connected=bool(len(visited_cells) == n_total_cells),
visited_cells={tuple(int(x) for x in coord) for coord in visited_cells},
),
)
return output
@staticmethod
def gen_prim(
grid_shape: Coord,
lattice_dim: int = 2,
accessible_cells: int | float | None = None,
max_tree_depth: int | float | None = None,
do_forks: bool = True,
start_coord: Coord | None = None,
) -> LatticeMaze:
warnings.warn(
"gen_prim does not correctly implement prim's algorithm, see issue: https://github.com/understanding-search/maze-dataset/issues/12",
)
return LatticeMazeGenerators.gen_dfs(
grid_shape=grid_shape,
lattice_dim=lattice_dim,
accessible_cells=accessible_cells,
max_tree_depth=max_tree_depth,
do_forks=do_forks,
start_coord=start_coord,
randomized_stack=True,
)
@staticmethod
def gen_wilson(
grid_shape: Coord,
) -> LatticeMaze:
"""Generate a lattice maze using Wilson's algorithm.
# Algorithm
Wilson's algorithm generates an unbiased (random) maze
sampled from the uniform distribution over all mazes, using loop-erased random walks. The generated maze is
acyclic and all cells are part of a unique connected space.
https://en.wikipedia.org/wiki/Maze_generation_algorithm#Wilson's_algorithm
"""
# Initialize grid and visited cells
connection_list: ConnectionList = np.zeros((2, *grid_shape), dtype=np.bool_)
visited: Bool[np.ndarray, "x y"] = np.zeros(grid_shape, dtype=np.bool_)
# Choose a random cell and mark it as visited
start_coord: Coord = _random_start_coord(grid_shape, None)
visited[start_coord[0], start_coord[1]] = True
del start_coord
while not visited.all():
# Perform loop-erased random walk from another random cell
# Choose walk_start only from unvisited cells
unvisited_coords: CoordArray = np.column_stack(np.where(~visited))
walk_start: Coord = unvisited_coords[
np.random.choice(unvisited_coords.shape[0])
]
# Perform the random walk
path: list[Coord] = [walk_start]
current: Coord = walk_start
# exit the loop once the current path hits a visited cell
while not visited[current[0], current[1]]:
# find a valid neighbor (one always exists on a lattice)
neighbors: CoordArray = get_neighbors_in_bounds(current, grid_shape)
next_cell: Coord = neighbors[np.random.choice(neighbors.shape[0])]
# Check for loop
loop_exit: int | None = None
for i, p in enumerate(path):
if np.array_equal(next_cell, p):
loop_exit = i
break
# erase the loop, or continue the walk
if loop_exit is not None:
# this removes everything after and including the loop start
path = path[: loop_exit + 1]
# reset current cell to end of path
current = path[-1]
else:
path.append(next_cell)
current = next_cell
# Add the path to the maze
for i in range(len(path) - 1):
c_1: Coord = path[i]
c_2: Coord = path[i + 1]
# find the dimension of the connection
delta: Coord = c_2 - c_1
dim: int = np.argmax(np.abs(delta))
# if positive, down/right from current coord
# if negative, up/left from current coord (down/right from neighbor)
clist_node: Coord = c_1 if (delta.sum() > 0) else c_2
connection_list[dim, clist_node[0], clist_node[1]] = True
visited[c_1[0], c_1[1]] = True
# we dont add c_2 because the last c_2 will have already been visited
return LatticeMaze(
connection_list=connection_list,
generation_meta=dict(
func_name="gen_wilson",
grid_shape=grid_shape,
fully_connected=True,
),
)
@staticmethod
def gen_percolation(
grid_shape: Coord,
p: float = 0.4,
lattice_dim: int = 2,
start_coord: Coord | None = None,
) -> LatticeMaze:
"""generate a lattice maze using simple percolation
note that p in the range (0.4, 0.7) gives the most interesting mazes
# Arguments
- `grid_shape: Coord`: the shape of the grid
- `lattice_dim: int`: the dimension of the lattice (default: `2`)
- `p: float`: the probability of a cell being accessible (default: `0.5`)
- `start_coord: Coord | None`: the starting coordinate for the connected component (default: `None` will give a random start)
"""
assert p >= 0 and p <= 1, f"p must be between 0 and 1, got {p}"
grid_shape: Coord = np.array(grid_shape)
start_coord = _random_start_coord(grid_shape, start_coord)
connection_list: ConnectionList = np.random.rand(lattice_dim, *grid_shape) < p
connection_list = _fill_edges_with_walls(connection_list)
output: LatticeMaze = LatticeMaze(
connection_list=connection_list,
generation_meta=dict(
func_name="gen_percolation",
grid_shape=grid_shape,
percolation_p=p,
start_coord=start_coord,
),
)
output.generation_meta["visited_cells"] = output.gen_connected_component_from(
start_coord
)
return output
@staticmethod
def gen_dfs_percolation(
grid_shape: Coord,
p: float = 0.4,
lattice_dim: int = 2,
accessible_cells: int | None = None,
max_tree_depth: int | None = None,
start_coord: Coord | None = None,
) -> LatticeMaze:
"""dfs and then percolation (adds cycles)"""
grid_shape: Coord = np.array(grid_shape)
start_coord = _random_start_coord(grid_shape, start_coord)
# generate initial maze via dfs
maze: LatticeMaze = LatticeMazeGenerators.gen_dfs(
grid_shape=grid_shape,
lattice_dim=lattice_dim,
accessible_cells=accessible_cells,
max_tree_depth=max_tree_depth,
start_coord=start_coord,
)
# percolate
connection_list_perc: np.ndarray = (
np.random.rand(*maze.connection_list.shape) < p
)
connection_list_perc = _fill_edges_with_walls(connection_list_perc)
maze.__dict__["connection_list"] = np.logical_or(
maze.connection_list, connection_list_perc
)
maze.generation_meta["func_name"] = "gen_dfs_percolation"
maze.generation_meta["percolation_p"] = p
maze.generation_meta["visited_cells"] = maze.gen_connected_component_from(
start_coord
)
return maze
# cant automatically populate this because it messes with pickling :(
GENERATORS_MAP: dict[str, Callable[[Coord, Any], "LatticeMaze"]] = {
"gen_dfs": LatticeMazeGenerators.gen_dfs,
"gen_wilson": LatticeMazeGenerators.gen_wilson,
"gen_percolation": LatticeMazeGenerators.gen_percolation,
"gen_dfs_percolation": LatticeMazeGenerators.gen_dfs_percolation,
"gen_prim": LatticeMazeGenerators.gen_prim,
}
"mapping of generator names to generator functions, useful for loading `MazeDatasetConfig`"
def get_maze_with_solution(
gen_name: str,
grid_shape: Coord,
maze_ctor_kwargs: dict | None = None,
) -> SolvedMaze:
"helper function to get a maze already with a solution"
if maze_ctor_kwargs is None:
maze_ctor_kwargs = dict()
maze: LatticeMaze = GENERATORS_MAP[gen_name](grid_shape, **maze_ctor_kwargs)
solution: CoordArray = np.array(maze.generate_random_path())
return SolvedMaze.from_lattice_maze(lattice_maze=maze, solution=solution)